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Summary 
Landscape ecology is seldom used in 
epidemiology. The aim of this study is to 
assess the possible improvements that can be 
derived from the use of landscape approaches 
on several scales when exploring local 
differences in disease distribution, using 
bluetongue (BT) in Corsica as an example. The 
environment of BT-free and BT-infected sheep 
farms is described on a fine scale, using high 
resolution satellite images and a digital 
elevation model. Land-coverage is character-
ised by classifying the satellite image. 
Landscape metrics are calculated to quantify 
the number, diversity, length of edge and 
connectance of vegetation patches. The 
environment is described for three sizes of 
buffers around the farms. The models are 
tested with and without landscape metrics to 
see if such metrics improve the models. 
Internal and external validation of the models 
is performed and the relative impact of scale 
versus variables on the discriminatory ability 
of the models is explored. Results show that 
for all scales and irrespective of the number of 
parameters included, models with landscape 
metrics perform better than those without. The 
1-km buffer model combines both the best 
scale of application and the best set of 
variables. It has a good discriminating ability 
and good sensitivity and specificity. 

Keywords 
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Un approccio ambientale 
derivato da una scala multipla 
dettagliata da immagini 
satellitari: esempio di creazione 
di modelli per la bluetongue in 
Corsica 
Riassunto 
L’ecologia ambientale viene talvolta utilizzata in 
epidemiologia. Scopo di questo lavoro è definire i 
possibili miglioramenti che possono derivare 
dall’uso dell’approccio di studio basato sull’analisi 
ambientale su varia scala nel caso si vogliano 
indagare differenze a livello locale nella 
distribuzione di alcune patologie, come ad esempio 
il caso della bluetongue (BT) in Corsica. Mediante 
l’utilizzo di immagini da satellite ad alta 
risoluzione e modelli di altitudine digitali, viene 
descritto su scala dettagliata l’ambiente di aziende 
BT-free e l’ ambiente di aziende infette da BT. La 
copertura del suolo è caratterizzata dalla 
classificazione dell’immagine satellitare. Le 
metriche ambientali vengono calcolate per 
quantificare il numero, la diversità, la lunghezza 
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del margine e il livello di contiguità delle aree di 
vegetazione. L’ambiente è descritto con buffer circa 
tre volte attorno all’azienda. I modelli sono testati 
con e senza le metriche ambientali per verificare se 
tali metriche migliorino i modelli stessi. Viene 
effettuata la validazione interna ed esterna dei 
modelli e viene esaminato il relativo impatto della 
scala confrontata con variabili sulla capacità 
discriminatoria del modello. I risultati dimostrano 
che per tutte le scale comprese, indipendentemente 
dal numero dei parametri inclusi, i modelli con le 
metriche ambientali incluse funzionano meglio di 
quelli senza le metriche ambientali incluse. Il 
modello con 1 km di buffer integra nel modo 
migliore sia la migliore scala di applicazione sia il 
miglior set di variabili. Tale modello possiede una 
buona capacità discriminante nonché buona 
sensibilità e specificità. 

Parole chiave 
Ambiente, Bluetongue, Corsica, Epidemiologia, 
Sistema informativo geografico, Telerileva-
mento. 

Introduction 
Landscape ecology focuses on the reciprocal 
interactions between spatial patterns and 
ecological processes (33). It covers a broad 
range of areas of inquiry, one of which relates 
to the quantification of the effects of landscape 
composition and structure of habitat. Such 
quantitative landscape approaches have been 
widely used to propose wildlife habitat 
conservation strategies (8, 29, 30), especially 
for bird communities (13, 17, 23, 27). Although 
an increasing number of epidemiological 
studies include land-use themes to identify 
and map environmental risk factors (6, 7, 10, 
19), in most of cases the only variables tested 
are the presence or the percentage of surface of 
land-cover units. Metrics relative to other 
aspects of landscape composition (such as 
diversity) or to landscape structure (edge, 
shape, connectivity, etc.) are seldom used (1, 
12, 15, 18, 22) although they can elucidate 
complex relationships between host, vector 
and reservoir ecologies. According to Ostfeld 
et al. (24), determining how often disease risk 
can be predicted from local conditions alone, 
and how often the landscape context modifies 

or overrides the impact of local conditions are 
two major research challenges (24). We 
propose to test whether landscape ecology 
approaches can be useful in epidemiology in a 
context where little is known about the habitat 
and biology of the vector, taking bluetongue 
(BT) as a model. A previous study confirmed 
the potential of these landscape approaches for 
BT (11), but relevant landscape scales and 
related environmental features have yet to be 
identified. 
BT is a vector-borne disease of ruminants 
transmitted by various species of Culicoides 
biting midges (Diptera: Ceratopogonidae). 
Since 1998, BT has spread in Europe, affecting 
both the Mediterranean Basin (Corsica, Italy, 
Portugal and Spain), Eastern Europe (Albania, 
Bosnia-Herzegovina, Bulgaria, Croatia, Greece, 
Kosovo, Republic of Macedonia, Serbia and 
Turkey) (14, 25) and, more recently, northern 
Europe (Belgium, continental France, 
Germany, the Netherlands and Luxembourg) 
(32). Recently, the first spatial process model 
developed on a fine scale and relying on 
geographic and climatic variables was used to 
identify potential infectious sites for BT in Italy 
(9). This model assigned equal weights to the 
eight variables, as follows: elevation, slope, 
aridity index, land use, animal density, soil 
type, temperature and normalized difference 
vegetation index (NDVI). In this study, we test 
a similar model developed for BT in Corsica, 
with a multiple fine-scale analysis, different 
remotely sensed environmental data sets and a 
statistical assignment of weights based on 
logistic regression modelling. 
Environmental data obtained from a digital 
elevation model (DEM) and a high-resolution 
SPOT (Satellite pour l’observation de la terre) 
satellite image (10 × 10 m pixel) were used to 
characterise the neighbourhood of BT-free and 
BT-infected sheep farms in southern Corsica 
on three scales. The SPOT image was classified 
to obtain a land-cover map, from which the 
percentages of surface of land-cover units, as 
well as landscape metrics, were calculated. For 
all three scales, models developed with and 
without landscape metrics were compared to 
assess possible improvements derived from 
the use of landscape metrics. Validation of the 



Hélène Guis, Annelise Tran, Frédéric Mauny, Thierry Baldet, A multiple fine-scale satellite-derived landscape approach: 
Bruno Barragué, Guillaume Gerbier, Jean-François Viel, example of bluetongue modelling in Corsica 
François Roger & Stéphane de La Rocque 

© IZS A&M 2007 www.izs.it/vet_italiana Vol. 43 (3), Vet Ital 701 

models was performed on the same data set 
and on a new set from the region of Ajaccio 
(Corsica) located 40 km north. Finally, the 
relative impact of scale versus variables on the 
discriminatory ability of the models was 
explored using this latter data set. 

Materials and methods 

Epidemiological data 
The detailed method is presented elsewhere 
(16). Briefly, 80 sheep farms were integrated in 
a geographic information system (GIS) 
(ArcGis™ 8.3 software). The farms were 
classified as infected if a BT outbreak had been 
officially recorded between 2000 and 2003. The 
farms were classified into two groups 
according to their breeding systems (those 
with only sheep holdings and those where 
other livestock species were raised with 
sheep). 

Environmental data 
The environment in the vicinity of the farms 
was characterised using three buffers sizes, 
namely: 0.5, 1 and 2 km referring to the flight 
range of Culicoides variipennis (21) (as the flight 
range of C. imicola remains unknown). From 
the DEM, four topographical variables were 
extracted, as follows: altitude, slope, aspect 
and sunshine. The length of rivers in the 
buffers was also calculated. A supervised 
object-oriented nearest neighbour classification 
was performed (eCognition® software) on the 
SPOT image. The land-cover map produced 
comprised nine classes, as follows: 
 woodlands (composed of broadleaf forests 
and maquis, a local association of dense 
shrubs and trees) 

 low shrublands (resulting from the 
disturbance of maquis by fire, human 
activities or significant exposure to wind or 
snow) 

 coniferous forests 
 open prairies 
 prairies with tree cover 
 cultivated land 
 marshes 
 impervious surfaces 
 water. 

The percentage of surfaces in the buffer zones 
occupied by each of the nine classes was 
calculated. 
Landscape data 
The land-cover map was considered as a 
mosaic of vegetation patches which were 
characterised by calculating landscape metrics 
(Fragstats freeware). These metrics were 
selected to reflect different aspects of land-
scape ecology (area-density-edge, diversity, 
isolation-proximity and connectivity). The six 
following metrics were calculated for each 
buffer (regardless of the land-cover class): 
 patch density 
 landscape shape index (measuring the total 
length of edge divided by minimum length 
of edge possible for a maximally aggregated 
class) 

 mean distance to neighbouring patches 
 connectance index 
 two diversity indexes: the patch richness 
density and Simpson’s diversity index (full 
detailed information on these metrics is 
available on the Fragstats site at 
www.umass.edu/landeco/research/fragstats/
fragstats.html). 

Another two metrics were calculated for each 
of the nine land-cover classes: the number of 
patches and the landscape shape index (LSI) of 
each class. 

Analysis 
As many variables were included in this study, 
a preliminary univariate screening analysis 
was performed using a 0.15 p-value. A 
stepwise logistic regression (Systat® software) 
was then performed to explain BT outbreak 
occurrence on the farms (dependent variable, 
p<0.1). Most landscape approaches only take 
into account the percentage of each land-cover 
class. To test whether the use of landscape 
metrics improved the accuracy of the models, 
models with and without landscape metrics 
were compared by calculating the corrected 
Akaike information criterion (cAIC). This 
criterion is used to compare non-nested 
models. It takes into account both goodness of 
fit and the complexity of the model (parsimony 
is favoured and over-parameterisation is 
penalised). Corrected AICs are used when the 
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ratio of n (number of observations) on K 
(number of parameters) is less than 40. The 
best model is the model with the smallest 
cAIC. 
The three models with landscape metrics were 
validated internally and externally (i.e. on new 
environmental and epidemiological data sets). 
For external validation, environmental 
variables from a second SPOT image were 
extracted from buffer zones around sheep 
farms located in the Ajaccio region (situated 
40 km north). The internal and external 
accuracy of the models were assessed by 
calculating the area under curve (AUC) of the 
receiver operating characteristics (ROC) curve 
(Stata® software). The ROC curve corresponds 
to the plot of sensitivity (y-axis) against (1– 
specificity) (x-axis). This accuracy metric 
measures the discriminatory ability of the 
models (28). 
Finally, the relative impact of scale versus 
variables on the discriminatory ability of the 
models was explored by testing the three sets 
of variables on the three scales for the new 
data set from the Ajaccio region. 

Results 

Epidemiological data 
The location and BT-status of the 80 sheep 
farms included in the study are shown in 
Figure 1. A total of 46 farms were considered 
as infected with BT and 34 as BT-free. 

Land-cover map of southern Corsica 
The land-cover map is shown in Figure 2. 

Comparing models with and without 
landscape metrics 
The models with and without landscape 
metrics and their evaluation (cAIC) are 
presented in Table I. For all three scales, the 
models with landscape metrics have the best 
cAIC, irrespective of the number of 
parameters. 

Validation of the three models with 
landscape metrics 
The internal validation of the three models 
with landscape metrics reveals that all three 
models have good to high accuracy of results. 

As suggested by the overlap of the 95% 
confidence intervals, no statistically significant 
difference of accuracy was detected when 
testing the AUC of the ROC curves (in all cases 
p>0.27) (Table II). 

 

Figure 1 
Location of bluetongue-free and bluetongue-
infected sheep farms in southern Corsica 

 

Figure 2 
Land-cover map of southern Corsica 

Nevertheless, the 1-km buffer scale model may 
appear to be more valuable than the others 
since it combines good discriminatory abilities 
for both internal and external validations, as 

 N France Italy 

  Spain Corsica 
  Sardinia 

 

 

 

 

 

 

 

 

 

 

80 sheep farms 
of southern Corsica 
BT status 
 BT-free (n=34) 
 BT-infected (n=46) 

 0 5 10 15 20 km 

Spot data/Isis program, © CNES (2001), distribution Spot image S.A. 

 N 
 10 km 

Land-cover classes 
 Low shrublands 
 Water 
 Woodlands 
 Coniferous 
 Open prairies 
 Prairies with tree cover 
 Impervious surface 
 Cultivated land 
 Marshes 

Spot data/Isis program, © CNES (2001), distribution Spot image S.A. 

 1 km 



Hélène Guis, Annelise Tran, Frédéric Mauny, Thierry Baldet, A multiple fine-scale satellite-derived landscape approach: 
Bruno Barragué, Guillaume Gerbier, Jean-François Viel, example of bluetongue modelling in Corsica 
François Roger & Stéphane de La Rocque 

© IZS A&M 2007 www.izs.it/vet_italiana Vol. 43 (3), Vet Ital 703 

Table I 
Variables included in the bluetongue models with and without landscape metrics for the three buffer 
areas 

Models 0.5 km- buffers 1-km buffers 2-km buffers 
Type of 
Variables Without 

landscape metrics 

With 
landscape 
metrics 

Without 
landscape 
metrics 

With 
landscape 
metrics 

Without 
landscape 
metrics 

With 
landscape 
metrics 

Farm 
attributes 

Farm type Farm type Farm type Farm type Farm type Farm type 

Geography Latitude Latitude Latitude  Latitude Latitude 

  Sunshine Sunshine Sunshine Sunshine Topography 
    Altitude  

Prairies with tree 
cover (%) 

 Presence of 
low shrubland 

Presence of 
low shrubland 

  Land-cover 
classes 

Open prairies (%)      

 Patch 
richness 
density 

 LSI of 
impervious 
surfaces 

 Number of 
patches of 
open 
prairies 

   LSI of open 
prairies 

  

Landscape 
metrics 

   LSI of 
woodlands 

  

cAIC 90.4 89.5 89.8 85.1 90.6 82.9 

LSI landscape shape index 
cAIC corrected Akaike information criterion (the smaller the cAIC, the better the model) 

Table II 
Internal and external validation of models with landscape metrics 

Model evaluation 0.5-km buffers 1-km buffers 2-km buffers 

AUC ROC curve 0.85 0.90 0.88 

95% CI 0.77-0.93 0.83-0.97 0.81-0.96 

Sensitivity (cut-off: 0.5) 87% 85% 87% 

Internal 
validation 
(southern 
Corsica, 
80 farms) 

Specificity (cut-off: 0.5) 62% 85% 68% 

Number of farms 151 134 130 

AUC ROC curve 0.73 0.81 0.77 

External 
validation 
(Ajaccio 
region) 95% CI 0.65-0.81 0.74-0.88 0.69-0.85 

AUC ROC curve area under curve of the receiver operating characteristics curve 
CI confidence interval 
 

well as good sensitivity and specificity results 
(85%, cut-off point: 0.5). 

Testing the effects of the scale of 
application versus the set of variables 
The results of the external evaluation (on the 
Ajaccio data set) of the three models with 
landscape metrics on the three scales are 
presented in Table III. Models A, B and C 
include three (farm type, latitude and patch 
richness density), six (farm type, sunshine, 
presence of low shrublands, LSI of impervious 
surfaces, LSI of open prairies and LSI of 
woodlands) and four (farm type, latitude, 

sunshine and number of patches of open 
prairies) variables, respectively. 

A comparison between columns shows the 
effect of the set of variables. Applied on the 
0.5-km and 2-km buffers, model C (4-variable 
model) has the highest accuracy (it has the 
greatest ROC AUC). Applied to 1-km buffers, 
model B (6-variable model) has the highest 
accuracy. As there is no single best set of 
variables whatever the scale, the set of 
variables does not have a more important 
effect than the scale of application on the 
accuracy of the models. 
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Table III 
Effects of scales and variables on the 
discrimination ability of the models 
Models A, B, C include the variables of the  
0.5-, 1- and 2-km buffer models with landscape 
metrics, respectively 
Variables of Model A: farm type, latitude, patch 
richness density 
Variables of Model B: farm type, sunshine, presence 
of low shrublands, landscape shape index (LSI) of 
impervious surfaces, LSI of open prairies, LSI of 
woodlands 
Variables of model C: farm type, latitude, sunshine 
and number of patches of open prairies 

AUC ROC curve Scale of application 
on external data Model A Model B Model C 

0.5-km buffers 0.734 0.746 0.773 (V) 

1-m buffers 0.779 (S) 0.807 (S, V) 0.802 (S) 

2-km buffers 0.767 0.757 0.769 (V) 

AUC ROC curve area under curve of the receiver 
operating characteristics curve 

(V) best set of variables for the scale considered 
(S) best scale of application for the model considered 
 

A comparison between lines shows the effect 
of the scale of application. For all three models 
tested (A, B and C), the most relevant scale of 
application is the 1-km buffer scale. The best 
scale of application is always the same 
whatever the set of variables, but the 
differences in accuracy of the models are not 
statistically significant. Therefore, the effect of 
the scale of application cannot be considered 
more important than the effect of the set of 
variables. 
Although not significantly more accurate than 
the other models, the application of model B to 
the 1-km buffer scale combines both the best 
scale of application and the best set of 
variables. 
Globally, the accuracy of the three models on 
the three scales are comparable (no significant 
differences) and can be considered as fair to 
good. As always, when differences are not 
statistically significant, the explanation might 
be that there are indeed no differences or that 
the data set is too small for differences to be 
detected. 

Discussion 
The odds ratios and the biological significance 
(importance of latitude, open land-covers, 
fragmentation of the landscapes, etc.) of the 

variables included in the model are not 
detailed here as they have been discussed 
elsewhere (16). We focused discussion on the 
methodological aspects of multiple fine-scale 
modelling and the potential improvements 
from the inclusion of landscape metrics. 

Fine-scale environmental variables 
Previous studies have widely proved the 
potential of using low-resolution satellite 
imagery to model the distribution of BT 
vectors through the analysis of meteorological 
surrogates (2, 3, 4, 5, 26, 31). These studies rely 
on the fact that vectors are influenced by 
environmental factors, such as rainfall, 
temperature, humidity, etc. Meteorological 
surrogates cannot be obtained from high 
spatial resolution remote sensors but instead, 
these types of satellites may provide 
information on land cover and, in particular, 
vegetation. Vegetation type and distribution 
are also related to meteorological conditions 
and thereby influence vector populations as 
well as host populations. They can thus be 
used to model vector populations and the 
diseases they carry (6). 
Only recently and for a few disease systems 
have landscape composition and structure 
been considered potentially important drivers 
of risk or incidence (24). This study shows that 
with a high-resolution image, new aspects of 
BT epidemiology can be explored. A wide 
range of variables were tested, and results 
show that landscape metrics can help to 
discriminate environments at risk of BT in 
Corsica, confirming that integrating landscape 
ecology with epidemiology may be valuable. 
As in all studies including numerous closely-
related variables, great caution should be 
taken to identify and understand multi-
collinearity effects. 

Multi-scale analysis 
Multi-scale designs are generally 
recommended in landscape analysis to 
determine the sensitivity of land-cover metrics 
to the environmental processes under study 
(20). Moreover, this was essential as, in the 
case of BT, little is known about the flight 
dispersal capacity of C. imicola. Results show 
that for all three scales, the accuracy of the 
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models was good or high. Larger ranges of 
scales could be tested to determine if there is a 
threshold after which models become clearly 
less efficient, which would give an idea of the 
extent to which the environment may 
influence the presence of the vector. The 1-km 
model combines the best set of variables with 
the best scale of application and has good 
discriminating ability as well as sensitive and 
specific results. Nevertheless, the other scales 
should not be ruled out since accuracy results 
are not significantly different. 

Landscape metrics in epidemiology 
For the three scales tested, and irrespective of 
the number of variables included, this study 
shows that in the case of BT, models that 
include landscape metrics provide a better fit 
than those that do not. These results are of 
major importance for entomological work, as 
the ecology of the vector has still only been 
described partially and further field work 
could be sampled based on landscape features. 
They also clearly support a wider use of 
landscape approaches to epidemiology. 
Indeed, landscape analysis approaches can be 
conducted whenever: 
 landscape elements are critical to vector, host 
or reservoir population 

 these elements can be detected at remote 
sensing scales (6). 

The first condition is likely to be fulfilled for 
most, if not all, vector-borne diseases. The 
second condition is bound to become less 
restrictive as spectral, temporal and, in 
particular, spatial resolutions of satellite 
sensors evolve. 
A similar approach based on vector 
distribution data instead of outbreak 
occurrence is being tested to assess the 
robustness of the results on variables and 
scales. This will also help determine whether 
vector-based models surpass disease-based 
models, vector presence being more closely 
linked to environmental conditions than 

disease outbreak occurrence (which supposes 
the concomitant presence of the virus, vectors 
and susceptible animals). 

Conclusions 
A multiple fine-scale satellite-derived 
approach was used to understand local 
distribution of disease outbreaks, taking the 
case of BT in southern Corsica. The usefulness 
of landscape metrics was shown, as whatever 
the scale considered, the inclusion of landscape 
metrics improved the models. Internal and 
external validation enabled the assessment of 
discriminating abilities of the models. 
Comparing the relative importance of scale 
versus variables showed that the model which 
offered the best validation results combined 
the best set of variables and the best scale of 
application. The methodology proposed here 
can be applied to wide range of diseases which 
are thought to be linked to environmental 
factors. 
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