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Spatio-temporal analysis of infectious disease 

outbreaks in veterinary medicine: clusters, hotspots 

and foci 

Michael P. Ward 

Summary 
Analysis of disease data that has an implicit 
spatio-temporal component (such as disease 
outbreaks, data generated by surveillance 
systems and specific hypothesis-based 
veterinary field research) is a foundation of 
veterinary epidemiology and preventive 
medicine. Components of this process include 
exploratory spatial data analysis (finding 
interesting patterns), visualisation (showing 
interesting patterns) and spatial modelling 
(explaining interesting patterns). Spatio-
temporal statistics and tests are valuable when 
adding precision to qualitative verbal 
descriptions, facilitating the comparison of 
distributions and drawing attention to 
characteristics unlikely to be noticed by visual 
inspection. Quantifying spatio-temporal 
patterns is important for understanding how 
disease phenomena behave. The application of 
a range of spatio-temporal statistics is 
illustrated by exploratory spatial data analysis 
and visualisation of the 2002 outbreak of West 
Nile virus encephalomyelitis in Texas equines. 
This large outbreak (1 698 reported cases) 
consisted of both point (latitude, longitude) 
and polygon (Texas counties) spatial data with 
a time component (reported date of onset of 
clinical disease) and case series and attack rate 
data. This example highlights the need to use a 
range of techniques to fully understand the 
spatio-temporal nature of disease occurrence. 
With knowledge of how disease occurs in time 
and space, appropriate and effective disease 

control, prevention and surveillance 
programmes can be implemented. 

Keywords 
Clustering, Disease, Epidemiology, 
Geographic information system, Space, 
Statistics, Texas, Time, United States of 
America, West Nile virus. 

Analisi spazio-temporali di 
focolai di malattie infettive in 
medicina veterinaria: cluster, 
hotspot e foci 
Riassunto 
L’analisi dei dati di carattere sanitario che hanno 
un’implicita componente spazio-temporale (quali 
quelli che riguardano i focolai di malattie, i dati 
generati dai sistemi di sorveglianza e da ricerche di 
campo basate su specifiche ipotesi) rappresenta il 
punto di partenza fondamentale dell’epidemiologia 
veterinaria e della medicina preventiva. Le 
componenti di questo processo comprendono 
l’analisi spaziale esplorativa dei dati (ricerca di 
schemi fonte di interesse), visualizzazione 
(presentazione di schemi fonte di interesse) e 
modellazione spaziale (spiegazione di schemi che 
suscitino interesse). La statistica e i test spazio 
temporali sono preziosi quando aggiungono 
precisione alle descrizioni verbali qualitative, 
facilitando la comparazione di distribuzioni e 
attirando l’attenzione sulle caratteristiche 
improbabilmente rilevabili con un semplice esame 
visivo. La quantificazione dei modelli spazio-
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temporali è importante per comprendere il 
comportamento di alcuni fenomeni legati alle 
malattie. Viene illustrata l’applicazione di una 
gamma di statistiche spazio-temporali attraverso 
l’analisi esplorativa di dati spaziali nonché la 
visualizzazione del focolaio, di encefalomielite dal 
virus West Nile negli equini in Texas nell’anno 
2002. La descrizione di questo esteso focolaio (i casi 
riportati sono 1.698) comprende sia dati spaziali 
puntuali (latitudine e longitudine) sia poligonali 
(contee del Texas) associati ad una componente 
temporale (data di insorgenza della malattia clinica) 
alla successione di casi e dati relativi al tasso di 
attacco. In questo studio si evidenzia la necessità di 
utilizzare una gamma di diverse tecniche di analisi 
per comprendere appieno la natura spazio-
temporale del verificarsi della malattia. La 
conoscenza delle modalità con cui una malattia si 
verifica in termini di tempo e spazio, sta alla base 
dell’implementa-zione di specifici ed efficaci sistemi 
di controllo e prevenzione nonché di specifici 
programmi di sorveglianza. 

Parole chiave 
Clustering, Epidemiologia, Malattie, Sistema 
informativo geografico, Spazio, Statistica, 
Texas, Tempo, Stati Uniti d’America, Virus 
West Nile. 

Introduction 
Understanding the distribution of disease in 
time and space is a foundation of 
epidemiology and hence preventive medicine 
programmes. Knowledge of where and when a 
disease occurs enables the generation of 
disease causation hypotheses for diseases with 
unknown or poorly characterised aetiology, 
identification of disease risk factors and the 
design of efficient disease surveillance and 
control programmes in animal health. The 
drawing of epidemic curves and construction 
of maps are basic skills used by 
epidemiologists to investigate disease 
occurrence. Spatio-temporal statistics and tests 
are useful for adding precision to qualitative 
verbal descriptions, facilitating the comparison 
of distributions and drawing attention to 
characteristics that might not be identified 
upon visual inspection. Quantifying spatio-
temporal patterns is important in the 

understanding of how spatio-temporal 
phenomena behave. Statistics quantify 
patterns. 
Specific statistical tests and techniques have 
been available to analyse spatio-temporal 
disease data for at least 60 years. During the 
1950s and 1960s, many techniques were 
developed and applied, including the nearest 
neighbour index (4), the autocorrelation 
statistic (18), Ederer-Myers-Mantel disease-
clustering procedure (7), Knox test (13) and the 
temporal scan (19, 20). Within the last 20 years, 
additional techniques have been developed to 
meet specific needs, including the Cuzick and 
Edwards test for inhomogeneous populations 
(5), population density adjusted auto-
correlation (21), spatial and spatio-temporal 
scan statistics (15, 16), local neighbourhood 
statistics (1, 9), empirical Bayes smoothing and 
kriging and other interpolation methods. 
Despite the development of a range of 
techniques that can be applied to analysing 
spatio-temporal phenomena, their application 
in the analysis of disease occurrence in animal 
health has been limited (31). We face a 
challenge in implementing these techniques as 
routine procedures within animal health 
control and prevention programmes. The aim 
of this paper is to show how a range of 
available spatio-temporal techniques and 
statistical tests can be applied to develop a 
better understanding of how disease occurs in 
time and space. This is illustrated by 
exploratory spatial data analysis and 
visualisation of the 2002 outbreak of West Nile 
virus encephalomyelitis in Texas equines. This 
example highlights the need to use a range of 
techniques to fully understand the spatio-
temporal nature of disease occurrence. 

Materials and methods 

Source data 
West Nile virus (WNV) is a mosquito-borne 
flavivirus. It was first detected in the Americas 
in 1999 as a cause of neurological disease in 
humans, horses and birds in the vicinity of 
New York City. Horses are particularly 
susceptible to WNV infection and may present 
acute clinical signs of encephalomyelitis, such 
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as ataxia, rear limb paresis, muscle tremors 
and fasciculations, and recumbency (25, 32). 
Although 80% of affected horses recover in 
three to four weeks with supportive treatment, 
a small proportion may have persistent 
neurological disorders (24). Since the mid-
1990s, the number of severe WNV disease 
outbreaks in equine populations has increased 
(2): recent outbreaks include Morocco (1996, 
2003), Israel (1998-2000), Italy (1998) and 
France (2006). The North American outbreak 
of equine WNV encephalomyelitis exploded 
during 2002, with nearly 15 000 laboratory-
confirmed cases in 44 states in the United 
States, 5 provinces in Canada and 3 states in 
Mexico. 
Despite an active surveillance programme 
(sentinel flocks, mosquito-trapping, human 
and equine case reporting) and detection in 
neighbouring Louisiana and Oklahoma, WNV 
was not detected in the state of Texas until 
2002. A total of 1 698 laboratory-confirmed 
(IgM-enzyme-linked immunosorbent assay 
[ELISA]) equine cases were reported during 
2002 in 204 of 254 Texas counties (33). The first 
cases were reported on 27 June from eastern 
coastal Texas. The epidemic peak occurred on 
5 October and 50% of cases were reported 
during a period of six weeks (3 September to 
17 October). The epidemic lasted 25 weeks and 
appeared to consist of three phases, as follows: 
 27 June-25 July: 44 cases (2.6%) 
 26 July-27 September: 633 cases (37.3%) 
 28 September-17 December: 1 021 cases 
(60.1%). 

The coordinates (latitude, longitude) were 
available for 1 334 of the 1 698 cases (78.6%). 
The county of origin was identified for all 
reported cases. In addition, estimates of the 
number of equines present in each Texas 
county in 2002 was available from the National 
Agricultural Statistics Service (NASS) website 
(www.nass.usda.gov/census/ 
census02/profiles/tx/index.htm). 

Spatio-temporal techniques and 
statistical tests 
Investigations of spatio-temporal disease 
distribution generally focus on whether 
disease cases are likely to have occurred at 

random. If this null hypothesis is rejected, 
disease cases may be overdispersed or 
clustered. Our interest is usually in clustering, 
since this implies that common animal 
characteristics, a source of exposure, or 
common environmental characteristics have 
lead to foci of disease. Identifying these foci is 
the first step in elucidating aetiology and thus 
designing control, prevention and surveillance 
programmes. Thus, we generally search for 
evidence when and where disease events occur 
are correlated. 
The first step in understanding empirical data 
(whether it has a spatial component or not) is 
the calculation of descriptive statistics. The 
central tendency of a set of points (or centroids 
of polygons) may be described by the 
arithmetic mean or a mean weighted by some 
attribute (for example, the date of onset of 
disease at each location or the estimated attack 
rate at each polygon centroid). The degree of 
dispersion of a set of points is measured by the 
standard distance deviation or standard 
deviational ellipse. 

Three types of distributions may be observed 
when studying populations, diseases or other 
events: uniform (evenly distributed), clustered 
(aggregated) or random. In the clustered 
distribution, there is a definite, discernible 
aggregation of points. One of the most 
common methods of describing the 
distribution of a set of disease cases, whether 
measured as points or polygons, is Moran’s 
autocorrelation statistic. This is an example of 
a global spatial test and is similar to the 
traditional Pearson correlation coefficient, 
except that the correlation of values of the 
same variable at different spatial locations is 
examined, with a weight matrix being 
included to define the spatial relationships 
between points or polygons. This weight 
matrix is often based on Euclidean distance, 
but may be modified to take into account 
neighbourhood relationships (for example, 
1 for adjacent pairs and 0 otherwise). A 
positive autocorrelation implies clustering. A 
similar statistic is the nearest neighbour index 
(4), which is the ratio of mean Euclidean 
distance between nearest neighbour points in a 
given area and the mean distance expected 
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from a randomly distributed series of points, 
calculated based on the study area or Poisson 
probability density function (11). Moran’s 
autocorrelation and the nearest neighbour 
index are sensitive to the spatial distribution of 
the underlying population at risk of disease. If 
the population at risk is clustered (for example, 
dairy herds in most countries are found in 
certain suitable ecoclimatic zones), then 
disease cases arising from that population are 
also expected to be clustered, even if the 
disease occurrence is not clustered per se. 
Adjustment for spatial variation in population 
density may be achieved using commonly 
available methods, such as standardisation. 
However, in many health studies and 
particularly in veterinary medicine, the 
information necessary to perform such 
adjustments and retain interpretability may be 
unavailable. To take into account population 
inhomogeneity, a modified autocorrelation 
(Ipop) was proposed by Oden (21) in which 
autocorrelation is adjusted to account for 
differences in population size across areas. A 
further development of the nearest neighbour 
index is the Cuzick and Edwards test for 
inhomogenous populations (15). This test 
compares the locations of case and control 
locations. Controls are drawn from the same 
underlying population as cases, thereby 
accounting for clustering that may occur in the 
population regardless of the clustering of 
cases. The test statistic is the number (summed 
over all cases and controls) of cases that are 
nearest neighbours to each individual case. 
The order of the analysis can range from 1 
(nearest neighbour) to n (farthest neighbour 
within the study area). 

Several statistical tests have been developed to 
assess global clustering of events jointly in 
time and space, including Barton’s method, the 
Knox test (13), a nearest-neighbour test (12) 
and Mantel’s time-space correlation statistic 
(17). The Mantel test statistic is the sum, across 
all pairs of events, of the time distance 
multiplied by the spatial distance. The 
standardised Mantel statistic (range –1 to 1) is 
a measure of matrix correlation and can be 
interpreted in a similar manner to Pearson’s 
correlation statistic: a positive value implies 

that events at locations close (or far) in space 
tend to occur close (or far) in time (or that 
events occurring close [or far] in time tend to 
be located close to [or far from] each other). 
The null hypothesis tested is that the time and 
space distances are independent. The 
significance of Mantel’s statistic can be tested 
using a randomisation process. Unlike some 
other methods (for example, the Knox test), 
Mantel’s method does not require specifying 
critical or threshold distances for space-time 
association. However, a weakness in the 
Mantel approach is that it is based on a linear 
model and therefore is insensitive to non-
linear dependence of time on space or space on 
time and it may be excessively influenced by 
larger distances in a data set (3). These issues 
may be addressed by various transformations 
of time and/or space distances. 
Moran’s autocorrelation, Oden’s Ipop, the 
nearest neighbour index, the Cuzick and 
Edwards test, and Mantel’s correlation statistic 
are examples of global spatial statistics, used to 
explore clustering without pre-determined 
hypotheses regarding cluster location or 
extent. If the interest in analysis is to identify 
local clusters, two recently developed 
techniques are commonly used: Anselin’s local 
indicator of spatial autocorrelation (LISA) and 
the Getis-Ord Gi* statistic (1, 9). Given a set of 
weighted data points (for example, date of 
onset of disease cases, or disease rates for areas 
represented by centroids), the LISA identifies 
those clusters with values similar in 
magnitude, and those clusters with very 
heterogeneous values. In essence, the LISA 
decomposes Moran’s autocorrelation statistic 
into contributions for each case location. Thus, 
the sum of LISAs for all observations is 
proportional to Moran’s autocorrelation 
statistic. 
When visually assessing choropleth maps of 
disease rates and proportions, an issue that 
must be addressed is the estimation of these 
metrics for areas with small denominator 
information. Given that areas, such as counties 
and other administrative units, may vary 
greatly in terms of animal populations, disease 
rates and proportions presented on a map can 
hide vastly different levels of confidence 



Michael P. Ward Spatio-temporal analysis of infectious disease outbreaks 
 in veterinary medicine: clusters, hotspots and foci 

© IZS A&M 2007 www.izs.it/vet_italiana Vol. 43 (3), Vet Ital 563 

implicit in these metrics. One solution to this 
problem is to use empirical Bayes smoothing. 
This procedure adjusts estimates for individual 
areas based on the overall (global) disease rate 
estimated for the entire study region (the 
‘prior’ distribution). Those areas with small 
animal populations are adjusted more than 
those with large populations, reflecting the 
statistical reliability of the estimates. As a 
result, disease rates and proportions are made 
more stable and less variable. 
A technique that allows detection of both 
global clustering and the identification of the 
location of specific clusters, and clustering in 
time, space and in time and space, is the scan 
statistic. The spatial scan statistic (15) uses a 
theoretical circular window placed on a map of 
all locations included in a study. This scanning 
window is sequentially centred around one of 
many possible centroids in the study area. For 
each centroid, the window radius may vary 
continuously from zero to some upper limit 
selected by the investigator. An upper limit of 
50% of the study area is recommended (14). 
Thus, the procedure creates – in theory – an 
infinite number of distinct geographical circles, 
containing within them different sets of 
neighbouring locations. Each set of locations is 
a possible candidate for a cluster. However, 
since discrete locations (longitude, latitude) or 
the centroid of areas within a study are used in 
spatial analysis, the number of candidate 
circles that must be assessed is finite. The 
procedure is considered invalid if the choice of 
radius is made after examining the data and 
estimating the size of potential clusters, or if 
the procedure is used to identify the window 
that best fits the data (14). 
The scan procedure is flexible in that data can 
be analysed using two different probabilistic 
models, based on the Bernoulli or Poisson 
distributions. For the Bernoulli model, the data 
has the form of cases and non-cases coded as 
‘1’ or ‘0’. Cases and non-cases may be selected 
from the study population, or may represent 
the entire study population. For the Poisson 
model, the number of cases at each location or 
within each area is assumed to be Poisson 
distributed. Under the null hypothesis, the 
expected number of cases at each location is 

proportional to the population size or 
population-time at risk at that location. For 
spatial analysis, results from using both 
models are generally similar (14). When there 
are few (<10%) cases compared to controls the 
Poisson model is a very good approximation of 
the Bernoulli model, although it may produce 
slightly conservative P-values. Calculations 
using the Poisson model typically take less 
computer time to complete than if the 
Bernoulli model is used (14). 
The spatial distribution of grazing livestock is 
almost always heterogenous; some areas may 
be intensively grazed and other areas may not. 
Similarly, the distribution of livestock 
enterprises, such as dairies, feedlots or poultry 
houses, are commonly clustered away from 
human population centres. This has 
implications for selecting a spatial cluster 
statistic. The question of interest is usually 
‘does spatial clustering occur above and 
beyond the spatial clustering of cases that 
arises due to spatial variation in population 
density?’ Adjustment for spatial variation in 
population density may be achieved using 
commonly available methods, such as 
standardisation. Regardless of the model 
(Bernoulli or Poisson) used in the spatial scan 
procedure, adjustment for lack of population 
homogeneity is achieved by conditioning on 
the total number of cases observed to calculate 
the expected number of cases for each location, 
a form of indirect adjustment. 
The spatial scan statistic is a cluster detection 
test, able to both locate and test the 
significance of clusters (29). The scan 
procedure may be used to detect clusters with 
high, low or high and low rates of disease. The 
latter is equivalent to a two-sided test. The 
most common analysis is to scan for areas with 
high rates, that is, for clusters. For each 
location and size of scanning window used, 
the alternative hypothesis is that there is an 
elevated (or decreased or either elevated or 
decreased) rate within the window as 
compared to outside. The likelihood function 
is maximised over all windows, identifying the 
window that constitutes the most likely cluster 
– the cluster that is least likely to have 
occurred by chance. The likelihood ratio for 
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this window is the maximum likelihood ratio 
test statistic. Its distribution under the null-
hypothesis and its corresponding P-value is 
obtained by repeating the same analytic 
exercise on a large number of randomly 
selected replications of the data set generated 
under the null hypothesis, in a Monte Carlo 
simulation. 

Data analysis 
The central location of the 1 334 WNV case 
locations was described using the mean centre 
statistic (8), and was compared with the mean 
centre weighted by date of onset (27 June to 
17 December). The standard deviational ellipse 
was calculated for each mean centre estimated. 
Mean centres and standard distance devia-
tional ellipses were also calculated for each of 
the three recognisable phases of the epidemic, 
phase I (44 cases; 27 June-25 July), phase II 
(633 cases; 26 July-27 September) and phase III 
(1 021 cases; 28 September-17 December). 

The number of reported cases were summed 
by county (204 counties reporting equine 
WNV cases during 2002) and county attack 
rates (cases per 1 000 horses at risk) were 
estimated. The centroid (latitude, longitude) of 
each Texas county was identified (8). Mean 
centres and standard distance deviational 
ellipses were calculated, weighted by county 
number of cases, population at risk or attack 
rates (8). 

The spatial distribution of all cases, and of 
cases in each of the three epidemic phases, was 
described using the nearest neighbour test and 
Moran’s autocorrelation statistic (8). The 
distance between nearest neighbours expected 
under spatial randomness was calculated 
based on an estimation of the Poisson 
parameter (number of cases divided by study 
area). The spatial distribution of county attack 
rates was also described using Moran’s 
autocorrelation statistic (8). Spatial clustering 
of counties reporting WNV cases was 
compared to those not reporting cases using 
the Cuzick and Edwards test, using county 
centroid as the indicator of spatial location and 
Euclidean distance to characterise the 
relationship between county centroids (28). 

County-specific WNV attack rates were 
smoothed, using an empirical Bayes method 
(27). The rate in each county was smoothed 
using data from its nearest (estimated by 
inverse squared Euclidean distance) 
10 neighbouring counties. 
The location of case clusters was identified 
using spatial and spatio-temporal scan 
statistics. A Poisson model was used (since 
<10% of the study population – 327 563 horses 
in Texas in 2002 – were reported as cases). 
Case information consisted of the number, 
county and date of onset of reported cases. 
Population information consisted of the 
estimated number of horses in each Texas 
county in 2002. Location information consisted 
of the centroids (latitude, longitude) of each 
county in Texas. Data was scanned with a 
spatial window of 1% of study area 
(approximately 7 000 km2) and a temporal 
window of 30 days. Only clusters with high 
(rather than low or low and high) WNV case 
attack rates were identified. The likelihood 
ratio test was used to test for statistical 
significance. Its distribution under the null 
hypothesis (that the rate of disease within a 
scanning window based on a certain location is 
not different from the rate of disease outside 
the window) and its corresponding P-value 
was obtained by repeating the likelihood 
calculations on a large number (999) of random 
replications of the data set generated under the 
null hypothesis using Monte Carlo simulation 
(14). 

Results 
The mean centre of Texas counties reporting 
cases of WNV weighted by the population at 
risk was approximately 148 km to the south-
east of the case-weighted mean centre. The 
mean centre weighted by the estimated county 
attack rate was approximately 128 km to the 
north-west of the case-weighted mean centre 
(Fig. 1). The mean centres and standard 
deviational ellipses for each of the three phases 
of the WNV epidemic are shown in Figure 1. 
The centres were located in south-east, north-
west and north-central Texas during these 
three phases, respectively. During phases I and 
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II, the distribution was ellipsoid (south-east to 
north-west), but during the final phase it was 
circular. The observed distance between cases 
was less than half that expected for all three 
phases of the epidemic. Moran’s auto-
correlation statistic indicated that both the 
distribution of date of onset of cases (I = 0.13; 
P<0.001) and the distribution of estimated 
county attack rates (I = 0.29; P<0.001) were 
clustered. The results of the Cuzick and 
Edwards test applied to case and control Texas 
counties are shown in Table I. Overall, no 
significant clustering of case counties was 
detected (combined P-value = 0.12), although 
significance (P<0.05) was present at nearest 
neighbour levels of 4, 5, 7 and 9. Mantel’s 

correlation for all cases was 26.8% (P = 0.001). 
Mantel’s correlation for each of the three 
epidemic phases was <1% (P = 0.492), 18.1% 
(P = 0.001) and 7.6% (P = 0.001). 

Estimated crude WNV county attack rates and 
rates smoothed using an empirical Bayes 
algorithm are shown in Figure 2. Rates were 
smoothed using the 10 nearest neighbours 
weighted by inverse squared distance. Using 
this smoothing algorithm, the range of 
estimated attack rates was reduced from 
65 cases per 1 000 horses at risk to 27 cases per 
1 000 horses at risk and the standard deviation 
of the mean attack rate (8 cases per1 000 horses 
at risk) was reduced from 10.04 to 6.59. 

 
Figure 1 
Equine West Nile virus encephalomyelitis in Texas countries in 2002 
(Left) Mean centres of counties reporting cases, weighted by county case count ( ) and estimated county attack 
rates ( ; cases per 1 000 horses at risk) 
The mean centre of Texas counties weighted by estimated county horse population is also shown ( ) 
(Right) Mean centres and standard deviational ellipses of reported cases during three phases of the epidemic: 
27 June-25 July (Ο), 26 July-27 September ( ) and 28 September-17 December ( ) 

Table I 
Analysis of spatial clustering of Texas counties that did (cases) or did not (controls) report equine West 
Nile virus encephalomyelitis in 2002 
(using the Cuzick and Edwards test) 
Combined P-values (based on Monte Carlo randomisation) for all k were 0.12 (Bonferroni correction method) and 
0.06 (Simes correction method) 

k Test statistic, T Expected (T) Variance (T) Z statistic Monte Carlo P-value 

1 168 164 26.6 0.84 0.23 

2 336 327 43.7 1.31 0.27 

3 502 491 58.3 1.43 0.38 

4 677 655 73.4 2.60 0.02 

5 853 818 102 3.42 0.01 

6 1 020 982 120 3.46 0.31 

7 1 196 1 146 150 4.09 0.02 

8 1 368 1 309 180 4.37 0.09 

9 1 542 1 473 214 4.70 0.04 

10 1 711 1 637 261 4.59 0.22 

 

N N 

 km km 
0  75 150  300   450 0  75 150  300   450 
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Using the scan statistic, the most likely (log 
likelihood ratio = 90.3, P = 0.001) spatial cluster 
of WNV cases occurred in two counties in 
north-central Texas (Fig. 3). A total of 84 cases 
were reported from a population at risk of 
2 402 (35 cases per 1 000 horses at risk). Using 
the Poisson model, 12.45 cases would be 
expected to be reported from this size 
population. Thus, 6.7 times as many cases 
were observed as expected. An additional 
12 significant (P<0.01) clusters were identified, 
located in north-west (24 counties), north-
central (10 counties) and south (one county) 
Texas (Fig. 3). Attack rates in these clusters 
ranged from to <1 to 57 cases per 1 000 horses 
at risk, and included from one to six counties. 
The most likely spatio-temporal cluster 
identified (log likelihood ratio = 205, P = 0.001) 

occurred in 5 counties in north-west Texas 
between 15 August and 10 September (Fig. 3). 
A total of 67 cases were reported from a 
population of 3 117 equines (21 cases per 
1 000 horses at risk). Using the Poisson model, 
1.2 cases would be expected to be reported 
from this size population. Thus, 56 times as 
many cases were observed as expected. An 
additional 28 significant (P<0.01) clusters were 
identified, located in north-west (42 counties), 
north-central (24 counties), east (3 counties) 
and south (9 counties) Texas (Fig. 3). Attack 
rates in these clusters ranged from 3 to 27 cases 
per 1 000 horses at risk, and included from one 
to six counties. Clusters occurred between 
7 July and 11 November (Fig. 4). Most clusters 
began during the week of 29 September. 

 
Figure 2 
County attack rates of equine West Nile virus encephalomyelitis in Texas in 2002 
Left: Estimated crude attack rates 
Right: Attack rates smoothed using an empirical Bayes method based on the 10 nearest neighbouring counties 
determined by inverse distance squared 

 

Figure 3 
Location of clusters of equine West Nile virus encephalomyelitis in Texas during 2002 
Left: Significant (P<0.05) spatial 
Right: Spatio-temporal 
The most likely clusters are shown ( ) 
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Figure 4 
The timing of occurrence 27 significant (P<0.05) spatio-temporal clusters of equine West Nile virus 
encephalomyelitis in Texas in 2002 

Discussion 
Clustering of disease can be subtle and quite 
complex – for example, when populations 
change substantially over time and are not 
uniformly distributed in space. As with all 
epidemiological investigations, statistical 
techniques are helpful, and sometimes 
essential, in understanding the disease process. 
Spatio-temporal statistics have three special 
attributes in these circumstances, namely: 
 they add precision to qualitative verbal 
description 

 they facilitate the comparison of 
distributions by offering objective, 
quantitative criteria 

 they may draw attention to characteristics 
unlikely to be noticed by visual inspection 
(10). 

Clearly, the use of spatio-temporal statistics 
can enhance our understanding of how disease 
occurs in animal populations. 
Despite the rapid increase in the application of 
geographic information system (GIS) 
technology, the use of statistical tests to 
investigate clustering of disease in veterinary 
medicine remains relatively uncommon (30, 
31). Analysis of data in GIS does not routinely 
employ statistical tests of spatial clustering. 
Rather, GISs have generally been used to 
analyse (through visual interpretation) the 
relationships between potential risk factors 
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and the occurrence of disease (incidence or 
prevalence) on a geographical basis. The lack 
of availability of and user familiarity with 
statistical software has restricted the spatial 
and temporal analyses of data sets for disease 
clustering. One of the barriers to the use of 
advanced spatial analytical techniques has 
been the lack of compatibility between GIS and 
specialist statistical software. Newer GIS 
software, such as ArcGIS™ version 9.0 and 
GeoDa™ 0.9.5-i5, include limited statistical 
functionality (in the case of ArcGIS™ version 
9.0, this includes descriptive statistics [mean 
centre, standard deviational ellipse], global 
spatial statistics [Moran’s autocorrelation, 
nearest neighbour] and statistics for 
identifying local clusters [Anselin’s local 
indication of spatial autocorrelation, Getis-Ord 
Gi*]). Some more recent specialised software 
for spatial analysis, such as ClusterSeer® 
version 2.0, now has the option of importing 
shapefiles produced within GISs. Similarly, 
software capable of performing empirical 
Bayes smoothing, for example, STIS™ version 
1.0.6 and GeoDa™ 0.9.5-i5, can also make use 
of GIS shapefiles. The statistical analysis of 
spatial distributions remains a weak point in 
the application of GIS technology. If GIS 
technology is to fulfil its potential as a general-
purpose tool for handling spatial data, it needs 
stronger analytical capabilities (23). 
Development of statistical software to 
investigate disease clustering and integration 
of these routines into GISs, will improve the 
ability of epidemiologists to identify and 
describe determinants of disease. 
No omnibus test exists for assessing spatial 
and temporal clusters of disease. Thus, 
investigators have been advised to ‘perform 
several related tests and to report the results 
that are most consistent with validated 
assumptions’ (3). As part of an overall 
approach to investigating clusters, the 
information provided by these tests is useful 
for developing a better understanding of 
disease causation. Autocorrelation is an easily 
understood technique. The LISA approach and 
Mantel’s correlation for spatio-temporal 
clustering are useful for variables measured on 
a continuous scale, such as disease prevalence 

and incidence, and dates of onset of disease. In 
situations in which disease case-control data 
exist, the nearest neighbour test and Cuzick 
and Edwards test are appropriate to test for 
global clustering. The most flexible technique 
for investigating spatial and spatio-temporal 
disease clusters is the scan statistic. It can be 
used for both disease rate and case-control 
data, point or area data, it accounts for 
heterogeneity among the population at risk 
and potential confounders can be controlled. It 
can both test for global clustering and can 
identify the location of specific clusters. A 
disadvantage of the scan statistic is that 
subjectivity is introduced into the testing 
procedure by the need to select the size of the 
spatial and temporal scanning windows. It is 
recommended that the scanning window 
should be based on biological characteristics of 
the disease being studied. For example, Paré et 
al. (22) used a window of 2 to 14 days in length 
to investigate temporal clustering of Salmonella 
krefeld infection in horses admitted to an 
intensive care unit of a veterinary hospital. 
This was based on the average duration of 
hospitalisation, the known lag period between 
infection and shedding of Salmonella species, 
and the need to perform multiple cultures to 
detect Salmonella organisms. In contrast, Singer 
et al. (26) and Doherr et al. (6) used a range of 
window lengths in their studies, apparently in 
an attempt to generate disease causation 
hypotheses. Obviously, the more analyses 
performed using a wide range of scanning 
windows the more likely it is that significant 
clustering will be detected. Thus, the 
investigator needs to carefully consider the 
aim of analysis and to review available 
literature and expert opinion on the disease of 
interest prior to selecting one or more scanning 
windows to use. The selection of a scanning 
window a priori will provide more robust 
results. 
The power of techniques to detect time-space 
clustering is not well-characterised, but is 
probably only low to moderate. For example, 
the Mantel test has been found to be 
insensitive to clusters characterised by a 
gradual change in the risk of event occurrence 
(‘clinal’), but moderately sensitive (up to 40%) 
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in detecting ‘hot spot’ clusters (a situation in 
which one sub-region of the study area has a 
uniform and greater risk than the rest of the 
study area), using a sample size of 50 events 
(34). The false-positive rate was found to be 
close to the nominal type-I error (0.05) used. 
The increasing sophistication of database 
management and GIS may increase the 
number of studies investigating the interaction 
between the temporal and spatial occurrence 
of disease in veterinary epidemiology. Several 
techniques should be used when attempting to 
identify and describe whether events are 
clustered in time and space in order to 
maximise the power of the analysis. In 
addition, it is important to consider the spatial 
and temporal model implicit in techniques 
chosen when interpreting results of analysis. 
Recent developments in livestock production 
are likely to increase the need for 
epidemiologists to undertake time-space 
analyses. For example, better identification of 
livestock and routine recording of their 
location and health and production status 
offered by modern animal health monitoring 
systems incorporating novel technology will 
provide data which readily can be used to 
detect unusual disease clusters and to generate 
and test hypotheses regarding causes of sub-
optimal health and productivity. Without 
appropriate techniques to analyse and 
interpret these data, the costs of database 
construction may exceed the benefits realised. 

Conclusion 
Investigations of disease clustering in animal 
health can be greatly enhanced through the 
use of a variety of analytical techniques. These 
techniques add considerable information to 
disease investigations and provide the 
veterinary epidemiologist with a firm 
foundation on which to build causal 
hypotheses and implement control strategies. 
A challenge is to implement these techniques 
as routine procedures within animal disease 
control and prevention programmes. Increased 
data quality and availability through the 
development of modern animal disease and 
production monitoring and surveillance 
systems, new techniques such as remote 
sensing, the ability to sort and recombine data 
using GIS, and the increasing availability of 
software packages over the past three decades 
have created an ideal environment for 
epidemiologists to apply spatial and temporal 
analytical techniques to disease problems. 
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