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Summary 

Recent epizootics of Culicoides-borne disease in the Mediterranean Basin have stimulated the 
development of climate-driven models for vectors. Predictor variables come from two main 
sources, weather data and satellites. Generally, models for Culicoides imicola combine temperature 
and moisture variables. The best weather models explain 75-85% of the variance in observed data 
for C. imicola, but satellite models perform better (85-95% of variance). Predictions of models for 
other regions appear mixed, with successes and failures. The failures indicate the need to: 

• explore and incorporate other factors that may affect Culicoides populations, such as soil 
characteristics, host type and wind speed 

• develop more complex models, recognising that different climate variables affect different stages 
of the life-cycle e.g. biological models. The very rapid spread in the distribution of C. imicola in 
recent years suggests that global warming may be a less important driver of change than other, 
currently unknown, factors. 

Keywords 

Bluetongue – Climate – Culicoides imicola – Global warming – Land surface temperature – Modelling 
– Normalised difference vegetation index – Satellite – Weather. 

 

Recent epizootics of Culicoides-borne disease in the 
Mediterranean Basin, such as the 1987-1991 
outbreak of African horse sickness (AHS) in Spain, 
Portugal and Morocco (2), and the ongoing 1998-
2004 bluetongue (BT) epizootic (1), have stimulated 
the development of models of the spatial distribution 
of the Culicoides vectors, principally C. imicola. The 
models are climate-driven, as the life-history traits 
(e.g. survival and fecundity) of Culicoides are highly 
influenced by climatic factors, and this, in turn, 
affects their distribution and abundance, and the 
distribution and intensity of the diseases they 
transmit. The purposes of the modelling are as 
follows: 
• to improve our understanding of the biotic and 

abiotic determinants of the distribution of the 
vectors 

• to identify the limits to the distribution permitted 
by suitable climate, and thereby to define new 
areas at risk and areas that might remain disease-
free 

• to investigate how the distribution might change 
under scenarios of future global warming. 

This review is limited to consideration of models of 
C. imicola. 

Many weather variables influence Culicoides 
populations via their effects on survival and 
fecundity (11). High temperatures yield smaller, less 
fecund adults and both high and low temperatures 
lead to larval and adult mortality (17). The pupae of 
C. imicola may drown if breeding sites become too 
wet following rain. Equally, lack of rain and the 
concomitant low soil moisture may desiccate larvae. 
Low relative humidity at high temperature causes 
low saturation deficit, which will desiccate adults. 
There is evidence that high windspeeds affect local 
Culicoides populations, perhaps via dispersal (blowing 
midges away, both literally and metaphorically), 
starvation (adults unable to find feeding 
opportunities during consistently windy conditions) 
or desiccation (3, 4). 

The development of climate-driven models for the 
distribution of Culicoides vectors requires uncovering 
the statistical relationship between climate variables 
and the presence/absence, or abundance, of the 
vectors. The vector picture to be modelled is blurred, 
however, by the understandable tendency to estimate 
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the vector population using light traps. The number 
of Culicoides spp. caught per night in a light trap is 
proportional to the size of the local population 
(which is what needs to be measured), multiplied by 
the activity rate and multiplied again by the efficiency 
of the trap. The latter two quantities are themselves 
affected by the weather (11, 12), and this confounds 
attempts to determine the effect of climate on the 
population. Activity rate is defined as the proportion 
of the population that is active in a given night and, 
for Culicoides, this rate is highly variable (2). Thus, 
Culicoides tend to be less active when nights are very 
hot or cold or when relative humidity is very low; 
they tend not to fly when it is raining; and they are 
not active when windspeeds exceed certain levels. 
Activity is also dependent upon light levels. 

Trap efficiency is a measure of the ability of a trap to 
catch the vectors in its immediate area: if trap 
efficiency is 100%, the trap catches all vectors that 
approach it on a given night. For Culicoides, it is likely 
that trap efficiency is reduced by light sources other 
than that of the trap, such as moonlight, as this may 
distract the midges from approaching the trap. More 
significantly, the use of a suction device in light traps 
means that their efficiency reduces with an increase 
in windspeed. This effect has been known for other 
insects for many years (16) and the small size of 
Culicoides means that the effect is especially 
significant. Controlled experiments conducted at 
Pirbright (12), in which Culicoides were released into a 
room and caught in a trap exposed to different 
windspeeds, indicated a logarithmic relationship 
between windspeed and the reduction in trap 
efficiency (Fig. 1). A repercussion of this effect in 
the field is that trap catches outside a stable reduce at 
higher windspeeds, while those inside the stable do 
not (10). 

How can the precise relationship be determined 
between Culicoides population size and climatic 
variables when, for example, temperature also 
reduces activity rates and windspeed reduces both 
activity and trap efficiency? In most experiments, the 
best estimate of a population variable is taken to be 
the average of a number of samples. However, the 
approach used here was borrowed from the field of 
remote sensing, called ‘maximum compositing’. For 
satellite images of the earth, the detected level of 
radiance from the earth may be decreased but not 
increased (compared to the ‘true’ level of radiance) 
by cloud cover or other atmospheric effects. The 
best estimate of the true level is, therefore, the 
maximum level across several images recorded at 
different times. Similarly, Culicoides trap catches, as a 
proportion of the local population size, can only be 
reduced (and not increased) by the effects of weather 
on activity rate and trap efficiency (2). Thus, the best 

estimate of population size will be the single greatest 
catch over a time period. 

y = 31.136Ln(x) + 38.187
R2 = 0.7378
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Figure 1 
The effect of windspeed on the ability of a light/suction 
trap to catch Culicoides 
A known number of Culicoides nubeculosus were released into 
a chamber containing a trap, with fans positioned at different 
distances to create different windspeeds 
Reprinted with permission from L. O’Connell (12) 

In order to include a range of environmental 
conditions in the spatial model, population size must 
be estimated at as many sites as possible. However, 
maximum compositing of Culicoides catches requires 
repeated trapping at a given site over short time 
periods. Given that trapping effort is always limited, 
it is pertinent to ask how many trapping occasions 
are needed to provide an accurate estimate of 
population size and/or presence? To address this 
question, data from twenty-two sites in Morocco 
were analysed. These were sampled weekly between 
1993 and 1995 as part of a vector surveillance 
campaign set up in response to the 1989-1991 
epizootic of AHS. At sites of known C. imicola 
presence, the probability of a positive catch is about 
0.22 in January, increasing to 0.77 in October. These 
monthly probabilities were used to estimate the 
number of zero catches that are required to give 95% 
confidence in the absence of C. imicola (Fig. 2a). In 
October in Morocco, two nights with zero catches 
are required; three nights in August, September and 
November; four nights in June and five or six nights 
in July and December; and seven nights in May. This 
analysis includes data from a small number of sites 
where only a handful of C. imicola were trapped over 
two years, and in areas that were free from AHS. If 
these sites are excluded, the probability of a positive 
catch (at the remaining sites, where disease risk is 
assumed) is 0.25 in January and 0.86 in October. The 
number of nights trapping for 95% confidence in 
absence (Fig. 2b) is two in September and October, 
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three in June, August and November, four in July 
and five in April, May and December. In a country 
such as Morocco, which has experienced significant 
outbreaks of both AHS and BT, trapping for only 
one night is not sufficient at any time of year to give 
confidence that C. imicola, or disease risk, is absent. 

a) All known positive sites in Morocco 
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b) Excluding sites where only one or two Culicoides imicola 

were caught over two years, and which did not experience 
African horse sickness 
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Figure 2 
The probability of catching at least one Culicoides 
imicola at known positive sites in Morocco, when setting 
traps for one to three nights 
The dashed line indicates the threshold above which there can 
be 95% confidence that Culicoides imicola is absent from a site, 
if none have been caught 

Vector abundance, for the purposes of disease risk-
mapping, must be measured at a spatial and temporal 

scale that is relevant to disease transmission. For 
Culicoides, population sizes change rapidly over time 
but generally show annual variation with one or two 
discrete peaks that for C. imicola tend to coincide 
with the seasonal peak of vector-borne disease in 
endemic areas. Maximum composited numbers over 
two-week intervals, averaged across two years, were 
used as measures of abundance for climate 
modelling in Morocco (3) but the significant 
trapping effort required precludes the use of this 
estimate of relative abundance across extensive sets 
of sites. Analysis of catch data from Morocco 
indicates that the maximum of catches over two 
nights during the late summer peak is significantly 
correlated with the fuller measure of abundance, and 
thus, this low effort trapping regime may permit 
abundance to be estimated at a large number of sites. 

Climatic predictor variables used for modelling 
Culicoides presence/absence or abundance have been 
derived from two main sources, ground-collected 
weather data and satellite imagery. The former have 
ready biological significance, but are recorded 
synoptically at a relatively small number of weather 
stations that are often distant from trap sites, and 
between which it is necessary to interpolate, to 
obtain a continuous layer of climate information. 
Weather stations are expensive to buy and the data 
can be laborious to process. Finally, it may be 
difficult to obtain comparable weather data for other 
regions to which predictions might be extended. In 
contrast, satellite images are usually free and give 
global coverage at scales ranging from many 
kilometres to a few metres, thereby requiring no 
interpolation and facilitating extensive prediction. A 
further benefit is that suitably processed imagery is 
generally a better predictor of Culicoides than are 
ground-collected climate data. For example, 
windspeed and the annual minimum normalised 
difference vegetation index (NDVI, a measure of 
vegetation biomass obtained from earth-orbiting 
satellites) were the best predictors of the abundance 
of C. imicola in Morocco (3). In South Africa, a 
model using NDVI and land surface temperature 
(LST, a measure of ground temperature, again from 
satellites) accounted for 67% of variance in the 
abundance of C. imicola, compared to only 45% for a 
model using temperature and rainfall recorded by 
weather stations (5). 

Nevertheless, models for Culicoides continue to be 
developed using weather data. Logistic regression 
was used to model the presence/absence of C. imicola 
in Iberia using historic (1930-1960) weather data (as 
equivalent data were available for all of Europe, 
thereby facilitating extrapolation) (18). The best 
model, which correctly predicted presence/absence 
at 83% of sites in Iberia, comprised the temperature 
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of the coldest month (the lowest mean daily 
minimum), the warmest month (the highest mean 
daily maximum) and the number of months with a 
mean temperature of ≥12.5°C. This model is 
unusual in lacking moisture variables, which other 
studies indicate to be very important for C. imicola. 
Not surprisingly, this temperature-driven model 
predicts C. imicola territory to occur in a broad band 
across southern Europe, with few predictions of 
absence at latitudes lower than Madrid. This model 
has recently been criticised (7). However, it should 
be noted that the predictions being criticised are 
substantially different from those presented by 
Wittmann et al. (18), as they were generated from a 
different source of weather data, without calibration. 

Another logistic regression model, of the 
presence/absence of C. imicola at >500 sites in Italy 
(9) was based on 10 km × 10 km grid square data 
surfaces derived by interpolation between relatively 
few weather stations that were usually more than 
40 km apart. At many sites, trapping was undertaken 
for a single night only, with the sampling regime 
biased towards areas in which BT virus (BTV) was 
present (and thus presumably suitable for vectors), 
and, indeed, this model performed less well than 
others (77.5% correct predictions). The best model 
comprised the annual mean daily minimum 
temperature, the annual mean daily minimum relative 

humidity and altitude. The model performed well for 
many parts of Italy (but not southern Sicily, where 
C. imicola is predicted to be prevalent), but was not 
externally validated by extrapolation to other 
countries. 

Extrapolation to other countries was a primary 
objective of an 8-variable model of the abundance of 
C. imicola in Portugal, Spain and Morocco developed 
by discriminant analysis and 8 × 8 km fourier-
processed satellite imagery (6). Three abundance 
ranges were considered, of which the lowest 
included 0 (i.e. absence). The best model correctly 
predicted the abundance range at 93.2% of sites and 
included, as the most important variables, proxies for 
both temperature and moisture as well as altitude. 
The high accuracy of predictions in Iberia/Morocco 
encouraged more extensive extrapolation (Fig. 3). 
Suitable conditions for C. imicola were predicted for 
eastern Spain, the Balearics, northern North Africa, 
Sardinia, Sicily, parts of Lazio and Puglia (Italy), 
eastern mainland Greece, the Peloponnese, Rhodes 
and Cyprus. All of these areas are now known to 
harbour C. imicola. There are false-positive 
predictions for southern Sicily and there are 
significant false-negative predictions. Most notably, it 
fails to predict the occurrence of C. imicola in Corsica 
and eastern Calabria (Italy). 

 

 
Figure 3 
Abundance of Culicoides imicola predicted by a model derived from the observed abundances at 44 sites in Iberia and 
Morocco 
Reprinted with permission from Baylis et al. (5) 
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A similar model, based on recently collected vector 
data from Portugal (maxima of two summer catches) 
and fine resolution (1 × 1 km) satellite imagery (15), 
correctly predicted presence/absence at 95% of sites, 
and abundance range at 87% of sites. As before, the 
model comprised correlates of both temperature and 
moisture. Predictions across Europe are broadly 
similar to those of Baylis et al. (6). 

A 10-variable model for Sicily correctly predicted the 
presence/absence of C. imicola at 87% of sites (13). 
The model correctly predicted the presence of 
C. imicola in parts of Iberia (including the Balearics), 
Sardinia and parts of Greece. However, the predicted 
distribution was generally much more restricted than 
the observed, with little prediction of presence in 
southern Spain, Corsica, mainland Italy and North 
Africa. This limitation probably results from the low 
number of presence sites for C. imicola in Sicily, such 
that only a restricted range of potential C. imicola 
habitats were included in the training set. This raises 
the question of why C. imicola is not more 
widespread in Sicily, despite most models predicting 
the island to be climatically suitable. It has been 
suggested that the porosity of the volcanic soils in 
Sicily may be unfavourable for breeding sites (7). 

Finally, a 4-variable model for Corsica correctly 
predicted the C. imicola abundance range at 78% of 
sites (14). The predictions across Europe were less 
restrictive than in the study conducted in Sicily. The 
presence of C. imicola was correctly predicted in 
southern Portugal, south-western Spain, the east 
coast of Spain, the Balearic islands, the south coast 
of mainland France, the Corsican lowlands, most of 
Sardinia, northern and eastern Sicily, the west coast 
of mainland Italy, much of Calabria and Basilicata 
and parts of Greece, Turkey and Cyprus. There were 
some significant false-positive results, however: a 
low risk is associated with western Greece and Crete. 

In summary, the best C. imicola models correctly 
predict 80%-95% of observations when built from 
satellite data and 75%-85% when based on weather 
data. In most cases, the models incorporate both 
temperature and moisture variables. Most models 
indicate that presence/abundance is most likely at 
moist, lower-altitude sites that are warm but not too 
hot. There is disparity between satellite-derived 
models in different regions as to whether mean, 
minimum, phase or amplitude NDVI variables are 
most important or whether minimum land surface 
temperature is an important predictor. While this 
may arise due to differences in the resolution of the 
imagery used or due to differences in the trapping 
regimes, it may also reflect biological differences in 
habitat requirements across a species range. This 
variation in importance of particular variables 

between regions and models may be unimportant for 
the production of preliminary risk maps, but detailed 
maps will require investigation of the relationship 
between satellite-derived variables and biological 
processes that determine population performance. 
To date, no spatial models have attempted to 
incorporate the effects of windspeed as a possible 
variable that may control population size. Satellite-
derived data layers for windspeed are becoming 
available, but their utility has not yet been confirmed. 
There is a further need to investigate and include 
certain soil characteristics that may mitigate against 
C. imicola breeding, irrespective of the suitability of 
the climate. 

To date, only one model has been used to examine 
the possible effects of global warming on the future 
distribution of C. imicola (18). With a putative 2°C 
increase in mean temperature, the distribution of 
C. imicola is predicted to expand to the north, with 
significant probabilities of occurrence in southern 
France and northern Italy. This prediction is not 
surprising. As described earlier, this model is entirely 
temperature-driven and any effects of global 
warming on moisture (rainfall, humidity) or other 
weather variables cannot be taken into consideration. 
Indeed, it is the temperature-dependence of this 
model that almost certainly explains why it is the 
only model that has been used to investigate possible 
effects of climate change. Most studies have detected 
effects of both temperature and moisture on the 
occurrence of C. imicola. All climate change scenarios 
include effects on rainfall and soil moisture, but 
these are still difficult to predict with accuracy, and 
vary considerably geographically. Until the expected 
effects of climate change are known more clearly, it 
is too early to derive predictions on the future 
distribution of the moisture-sensitive C. imicola. 

More importantly, the scale of change in recent 
years, with the supposed spread of C. imicola to the 
Balearics, Corsica, Sardinia, Sicily, mainland Italy, 
France and Greece and a significant northward 
spread, is very rapid compared to the observed rate 
of global warming and, to date, there has been no 
detectable spread in Portugal in the last decade (8). 
While climate change may be in-part driving the 
spread of C. imicola (1), it is important to consider 
that there may be other contributing factors, as yet 
unidentified, and also that the pattern may arise from 
increased surveillance effort such that there is an 
increased rate of discovery of C. imicola populations. 

Finally, recent preliminary models have indicated 
that climatic determinants of distribution differ 
between Culicoides species, probably due to their 
differing life histories. Predictive risk maps for 
Culicoides-borne disease must be based on species-
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specific spatial models for C. imicola, and novel 
vector species to avoid omitting extensive regions at 
risk of transmission by the latter. 
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