

Virochip overview: a microarray for viral detection and discovery

Why develop a virochip?

1. Significant proportion of undiagnosed acute infections

- e.g., acute respiratory tract infections--15 – 40% unknown cause!
- encephalitis
- gastroenteritis
- 2. Need for rapid identification of emerging viral pathogens

3. Mounting evidence for a viral role in chronic diseases

- autoimmune disorders?
- inflammatory states?

Why not apply conventional technologies?

electron microscopy

(-)Sensitivity & scaling problems-•not all viruses present at sufficient titers [EM]
•not all viruses are cultivable [culture]
•not easily adapted to high throughput approaches

culture

High specificity methods:

Low specificity methods:

(+) no assumptions about viral agent

(+) exquisite sensitivity, throughput

ELISA, immunofluorescence

(-) too specific--

Can only detect what you already know

•Rapid viral evolution requires constant revision/expansion of assays

PCR

A 21st century approach to viral detection

The "Virochip" premise

- Simultaneous screening for *all* viruses
- Global or Pan-Viral approach via cross-hybridization
- Develop a comprehensive picture of which viruses are present in any sample *without preconceptions*

Strategy: utilize sequence conservation

Family level probes hit sequences conserved across multiple genera

Genus level probes hit sequences conserved across multiple species

Species probes are sequences unique to terminal nodes of viral taxonomy

Virochip probes are conserved across multiple levels of the viral taxonomy

End goal = maximize our capability to:

- 1. detect all known viral family members
- 2. detect novel, uncharacterized viruses
- 3. distinguish distinct viral species

Virochip, version 5.0

17,000+ viral sequences representing *all* viral species in GenBank as of June 2009.

>1000 unique viral reference genome sequence records >200,000 partial sequence records

What does empirical data look like?

Randomly primed RT-PCR amplification allows capture of ALL RNA present in specimens

Result: distinct hybridization profiles for diverse viruses

Wang et al, 2002

.... and for closely related viruses, too

Unrepresented viruses are also detected

How do we analyze the Virochip results?

E-Predict:

automated Virus Chip result interpretation

Goal:

Which virus best accounts for the observed pattern of hybridization?

Approach:

Create a library of "virtual" hybridization signatures for all known viruses. Compare observed result to these expected results.

Urisman et al, 2005

E-Predict: HeLa Cell RNA sample hybridization

Familus Danillana	rividae			
10592 Human	nanillomawirus tuno 19		0 369105	
10582 Hullian	papilionavilus cype 18	COLUMN TONIC	0.300195	
→ 9626069_80	Human papillomavirus	type 18	Papillomaviridae	65439
→ 9626069_269	Human papillomavirus	type 18	Papillomaviridae	65440
→ 9626069_81	Human papillomavirus	type 18	Papillomaviridae	53528
→ 9626069_263	Human papillomavirus	type 18	Papillomaviridae	35566
→ 9627356_269	Human papillom irus	type 45	Papillomaviridae	53605 🗕
10593 Human	papillomavirus type 45		0.214276	
→ 9627356_269	Human papillomavirus	type 45	Papillomaviridae	53605
→ 9626069_269	Human papillomavirus	type 18	Papillomaviridae	65440
→ 9626069_80	Human papillomavirus	type 18	Papillomaviridae	65439
→ 9626069_81	Human papillomavirus	type 18	Papillomaviridae	53528
→ 9626069_263	Human papillop irus	type 18	Papillomaviridae	35566
37112 Human	papillomavirus type 29		0.094531	
→ 9628502_277	Human papillomavirus	type 29	Papillomaviridae	34210
→ 9626069_269	Human papillomavirus	type 18	Papillomaviridae	65440
9627356_269	Human papillomavirus	type 45	Papillomaviridae	53605
→ 13128941_273	1 Human papillomavirus	type 84	Papillomaviridae	12112
→ 9627257_277	Human papillomavirus	type 10	Papillomaviridae	8039

Candidate viral family match

Matching viral genomes (with similarity score)

Array probes contributing to call (with raw signal intensity)

E-Predict can pick up double infections

Here, 2 distinct viral families called

Each genome called has high intensity cognate oligo hybridization signall
Call confirmed by independent serology assays and follow-up RT-PCRs

Virochip performance on real samples

Study 1: NATURI, Naturally acquired upper respiratory infections 82 cold specimens from asthmatic and non-asthmatic adults Virochip vs. culture, pathogen-specific RT-PCR AL Kistler et al., 2007.

Study 2: Acute pediatric respiratory infections 278 specimens from hospitalized children Test of Virochip vs. DFA, pathogen-specific RT-PCR CY Chiu et al., 2008.

- •Superior to DFA, culture
- •Comparable sensitivity (85% 90%)
- •High specificity (>99%) Plus....
- Detects double infections,
- •Detects viruses not routinely tested and viruses missed by DFA, culture

Virochip exceeds standard tests in 2 cases of acute respiratory distress

•28 yr old female presents w/ fevers, bloody sputum

•within 1 week, progresses to lung failure, intubated

- •tests negative for infection by ALL standard assays
- •endotracheal aspirate sent for Virochip analysis....

Human Parainfluenza virus 4 (HPIV4)

- •not included in standard viral pathogen test panels
- •conventional wisdom: HPIV4 confers mild illness
- another false negative!

CY Chiu et al., 2006.

- •63 yr old male, CML patient, presenting w/ pneumonia
- •tested negative by all standard viral panels
- Prophylactic antifungals, antibiotics
- •Sample sent for Virochip analysis....

Human metapneumovirus

- •Part of standard viral RT-PCR panel, why missed?
- Sequence recovery: FALSE NEGATIVE!
- •RT-PCR target sites are mutated in this isolate

How does E-Predict handle a novel virus for which sequence is not yet available?

Highest scoring candidate for SARS samples

amily: Coronaviridae				
220713 Avian infectious bronchitis virus				
9626535_1099	Avian infectious bronchitis virus			
963557 <mark>6_275</mark>	Turkey astrovirus			
9635572 <u>255</u>	Ovine astrovirus			
9626535_568	Avian infectious bronchitis virus			
9626535_1099_rc	Avian infectious bronchitis virus			
1 5081 544_766	Bovine coronavirus			
9630726_269	Human astrovirus			
1 5081 544_766_rc	Bovine coronavirus			
1 2175 745_728	Human coronavirus 229E			
9626535_727	Avian infectious bronchitis virus			

Unique features:

- 1. Coronaviridae call for human specimen, yet few mammalian CoV oligos
- 2. Many avian astrovirus oligos--sequences from a distinct viral family

Re-running E-predict after SARS CoV sequence is released...

Family: Coronaviridae					
227859 SARS coronavirus	0.371530				
9626535_1099	Avian infectious bronchitis virus	Coronaviridae	65374		
9635572_255	Ovine astrovirus	Astroviridae	65344		
15081544_766	Bovine coronavirus	Coronaviridae	7846		
9626535_1099_rc	Avian infectious bronchitis virus	Coronaviridae	5662		
15081544_766_rc	Bovine coronavirus	Coronaviridae	3845		

Same hybridization profile... Different call! By simply updating virtual hybridization profiles as new sequences become available, we can now call SARS CoV: 'software updates' increase diagnostic power of the Virochip

Virochip identification of novel viral species in acute infectious disease states

a clade of human rhinoviruses detected in NATURI

2 clades of human cardioviruses detected in ILI and stool

CY Chiu et al., 2008.

Virochip identification of novel viral species in specimens from chronic disease states

a novel gamma retrovirus in RNAseL-deficient prostate cancer tumors

a clade of divergent avian bornaviruses proventricular dilatation disease tissues

A. Urisman et al., 2006

AL Kistler et al., 2008.

Joe DeRisi Don Ganem Charles Chiu Alexander Greninger Peter Skewes-Cox Sharon Chao Nicole Fischer Anatoly Urisman Silvi Reich Charles Runckel Sarah Aarons

Dave Wang, Washington Univ. Homer Boushey, UCSF Bruce Patterson, Stanford Univ. David Schnurr, Calif. DHS Robert Silverman, Lerner Inst.

Ady Gancz, Susan Clubb

Doris Duke Foundation Howard Hughes Medical Institute

An example: family level oligos

