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Summary 14 

The evaluation of models the spread and control of animal diseases is a crucial 15 

undertaking if such models are to be used to inform decisions regarding the control or 16 

management of such diseases.  Two key steps in the evaluation of epidemiologic models 17 

are model verification and model validation.  Verification is the demonstration that a 18 

computer-driven model is operating correctly, and conforms to its intended design.  19 

Validation refers to the process of determining how well a model corresponds to the 20 

system that it intended to represent.  For a veterinary epidemiologic model, validation 21 

would address issues such as how well the model represents the dynamics of the disease 22 

in question in a population to which the model is applied, and how well the model 23 

represents the application of different measures for disease control. 24 

Just as the development of epidemiologic models is a subjective, ongoing process 25 

subject to change and refinement, so too is the evaluation of models:.  The purpose of 26 

model evaluation is not to demonstrate that a model is a “true” or an “accurate” 27 

representation of a system, but to subject a model to sufficient –  and continuing – 28 

scrutiny so that it may be used with an appropriate degree of confidence as an aid to the 29 

decision-making process. 30 

Among the steps that can be taken by epidemiologic modelers to facilitate the 31 

processes of model verification are to clearly state the purpose, assumptions, and 32 

limitations of a model; to provide a detailed description of the conceptual model for use 33 

by everyone who might be tasked with evaluation of a model; document steps already 34 

taken to test the model; and thoroughly describe the data sources and the process used to 35 

produce model input parameters from data. 36 
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1.  Introduction 39 

Computer-driven epidemiologic modeling is an increasingly common technique 40 

for the assessment of the potential for spread and for the potential consequences of 41 

animal diseases.  Modeling of animal diseases has been used to estimate the possible 42 

magnitude of an outbreak and the resources needed for response, and to inform policy 43 

decisions regarding measures for disease control (4, 6, 13, 14, 17, 28, 29, 46, 57).  44 

Epidemiologic models may take any of several forms.  Some are based on analytical 45 

formulas that describe the system of interest in a rigorously mathematical way (13, 14, 46 

28, 29, 63).  Other models employ computer-driven simulation in order to mimic the 47 

actual mechanistic processes at work within a system (5, 15, 22). 48 

Regardless of their form, all models – especially models which are intended for 49 

use by response planners and policy makers – require careful evaluation.  For models to 50 

be effectively used in these instances, a sufficiently high level of credibility of the model 51 

and its results must be achieved such that decision makers and other stakeholders can 52 

have a justifiable degree of confidence in their application.  By the same token, the 53 

careful evaluation of models can elucidate their limitations and weaknesses, can temper 54 

tendencies toward overreliance on apparently “objective” model-produced outcomes, and 55 

can minimize the misapplication of models. 56 

Methods for model evaluation are quite diverse; as several authors have noted, 57 

there is no single standard or approach that can be applied to all models (32, 41).  At a 58 

very basic level, as the mathematical or computational complexity of epidemiologic 59 
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models increases, it is essential to demonstrate that the mathematical framework or 60 

software used for a model is free from major errors which would threaten the accuracy of 61 

the calculations that the model produces.  Some approaches for the evaluation of models 62 

are by necessity qualitative: any assessment of the conceptual quality of a model, for 63 

example, is fundamentally qualitative in nature.  In some instances, it may be possible to 64 

use quantitative or statistical approaches to demonstrate correspondence between a model 65 

and a natural system, although the use of such quantitative methodologies does not 66 

necessarily ensure that a model is conceptually sound. 67 

The aim of this paper is to describe approaches for the evaluation of 68 

epidemiologic models intended to inform management or policy decisions regarding 69 

diseases of animals, with an emphasis on two approaches that have been called 70 

verification and validation.  Our specific objectives are as follows: 71 

• To briefly define and describe the processes of model verification and validation; 72 

• To discuss several approaches used to address the challenging issue of validation 73 

of epidemiologic models intended to inform emergency response plans; 74 

• To illustrate practical approaches to model verification and validation based on 75 

our experiences as members of the research team behind the North American 76 

Animal Disease Spread Model (NAADSM: 22); 77 

• And finally, to present a set of suggestions for steps that could be taken to 78 

improve the credibility and acceptance of epidemiologic models for the 79 

management of animal diseases. 80 
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2.  Model context, development, and evaluation 81 

Figure 1 illustrates a conceptual series of steps in the process of model 82 

development and application.  Several of these steps deal explicitly with the evaluation of 83 

models, but almost every stage in the figure implies some form of appraisal of the model 84 

under development.  Decisions made at the outset of model development regarding the 85 

specific purpose of a model and the questions for which it is being designed to answer 86 

will affect the ways in which the model’s utility and credibility are assessed. 87 

First and foremost, models must be evaluated in the context of the problems that 88 

they are intended to answer (35, 43, 52): the criteria used to judge a model intended to 89 

inform broad questions in a qualitative way will be quite different from those used to 90 

evaluate a model that claims to offer specific predictive capabilities. 91 

Second, for results of modeling investigations to be credible, the models must be 92 

built upon reliable data (50, 62).  Models based on incomplete or theoretical input data 93 

may yield useful hypotheses for further research and evaluation, but the limitations of 94 

such models should be clearly and expressly stated.  The more complete the input data for 95 

a model is, the more likely it is that its output will be credible. 96 

Third, just as the conceptual development of models is, in many respects, a 97 

subjective undertaking, so too is the evaluation of models.  Individual modelers must 98 

weigh the relative importance of different aspects of epidemiologic systems, and may 99 

come to different conclusions about how to represent different processes in their models, 100 

or even which processes to represent.  Any assessment of the credibility of a model must 101 

consider these subjective design decisions. 102 
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Fourth, Figure 1 makes the distinction between a conceptual model or model 103 

framework, and a specific model that applies a particular conceptual framework together 104 

with a particular dataset or set of parameter values to represent a specific situation.  105 

NAADSM, for example, is a framework for the development of epidemiologic simulation 106 

models, which has been used to build specific models of a variety of diseases in different 107 

settings and populations, such as foot-and-mouth disease (FMD) (45, 67), pseudorabies 108 

(46), and highly pathogenic avian influenza (HPAI) (19, 44), among others.  Both the 109 

conceptual framework and the particular instances in which the framework are used need 110 

to be evaluated.  The utility of the former does not necessarily rely upon the latter, but the 111 

quality of specific models is highly dependent on both the conceptual framework as well 112 

as on the data used for construction of specific models. 113 

Finally, Figure 1 illustrates that the process of model development and evaluation 114 

is cyclical and iterative.  Evaluation is not a single, discrete step, and “is not something to 115 

be attempted after the simulation model has already been developed, and only if there is 116 

time and money remaining” (35).  Model evaluation should instead be considered 117 

ongoing: model assumptions should be reassessed continually as new sources of 118 

information become available. 119 

The assessment of the computational correctness of a model has been called 120 

“verification”.  Verification deals with questions such as “Does the computer program 121 

perform all calculations correctly?”, and “Does the program match exactly what the 122 

designers intended?”  The assessment of how well a model conforms to or exemplifies 123 

the system that it is intended to represent is sometimes referred to as “validation” (32, 52, 124 

56).  Validation efforts are intended to address the question “Is a model an adequate 125 
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representation of the real system?”  [For the remainder of this paper, we will follow these 126 

definitions for “verification” and “validation”, but note that these definitions are not 127 

universally applied: for example, Oreskes et al. (42) use the terms “verification” and 128 

validation” to denote somewhat different concepts.]  Together, verification and validation 129 

efforts can help investigators to ascertain the overall quality and credibility of a model. 130 

3.  Model verification 131 

Model verification refers to the process of determining whether the model, as 132 

implemented in software, conforms to the desired conceptual model (52).  In other words, 133 

verification provides an assessment of whether the software implementation of the model 134 

is working correctly.  Among the criteria by which a model’s verification status might be 135 

assessed include its correctness (the “extent to which a model meets its specifications”) 136 

and its reliability (the “extent to which a model can be expected to perform its intended 137 

function with required precision”) (40, 58).  Any model used for scientific research or for 138 

decision support should be expected to meet a high standard for such characteristics. 139 

Model verification, although straight-forward in concept, can be time-consuming, 140 

particularly as models become more complex.  Sargent (52) and Scheller et al. (55) 141 

presented useful discussions of some of the software engineering practices that can 142 

facilitate the construction of verified models, particularly for larger projects, and several 143 

authors have provided detailed descriptions of approaches to verification (33, 70).  Here, 144 

we focus on two central aspects of model verification that directly impact the credibility 145 

of epidemiologic models regardless of their form, size, or scope: the production of 146 

documentation that describes the conceptual model in detail, and thorough testing to 147 

ensure that the model is performing as intended. 148 
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3.1.  Describing the conceptual model 149 

As shown in Figure 1, design of the conceptual model is an early stage in model 150 

development.  There is a great deal of value in explicitly documenting this conceptual 151 

model: such documentation can be used in an assessment of the conceptual validity of the 152 

model (see below), but at a more basic level, it can provide a standard by which the 153 

correctness of a model can be judged (33, 55).  The purpose of a written model 154 

specification is to describe, in clear, accessible language, the purpose, requirements, and 155 

conceptual details of a model.  The intended audience of such a document includes the 156 

modelers themselves as well as any technical personnel who will be involved in 157 

implementing the model, among others (see Section 4.2.1 below).  The model 158 

specification can also provide a basis for model testing (24, 55). 159 

In the case of NAADSM, the model specification document (24) describes every 160 

component of the modeling framework in detail: it is the authoritative source that 161 

describes how the conceptual model should operate, and is the standard by which the 162 

software implementation of the conceptual model is judged.  Although the specification 163 

may be updated as needed to correct ambiguities or to incorporate new features, the 164 

complete history of the specification is tracked, and every version is available for 165 

reference and evaluation by independent researchers (23, 24). 166 

3.2.  Model testing 167 

Fairley (11) and Whitner and Balci (70) distinguish between two forms of model 168 

testing, which they refer to as “static” and “dynamic”.  For simple models, static testing 169 

may be sufficient: such an approach involves a structured examination of the formulas, 170 

algorithms, and code used to implement a model, preferably by several reviewers who 171 
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were not directly involved in writing the implementation themselves.  Garner and Beckett 172 

(15) described the use of this approach in the development of AusSpread, a simulation 173 

platform designed initially to model the spread and mitigation of FMD. 174 

For more complex models, dynamic testing is often useful: during dynamic 175 

testing, a computer program is run repeatedly under different conditions to ensure that the 176 

output it produces is correct according to the conceptual model and consistent with 177 

expectations.  Often, such tests are established to be run repeatedly and automatically, to 178 

ensure that any changes to the software implementation did not inadvertently introduce 179 

errors; this process is referred to as regression testing.  Scheller et al. (55) describe 180 

several levels of testing, from simple unit tests that evaluate specific, individual 181 

functions; to system testing that assess the interaction of all of the components of a 182 

model.  We will illustrate these approaches in the following sections with examples from 183 

the development of NAADSM. 184 

3.2.1.  Automated software testing of the NAADSM framework 185 

In order to ensure that the NAADSM application correctly implements the 186 

conceptual model specification, NAADSM relies upon an automated regression testing 187 

approach.  Simple models have been constructed to test every aspect of the NAADSM 188 

application.  There are currently well over 1000 individual models in this suite of tests, 189 

and new tests are continually being developed.  When the NAADSM application is 190 

compiled from program source code, every test is automatically run and results are 191 

tracked using a freely available framework for software testing (54).  Prior to the public 192 

release of any new version of NAADSM, every test in the suite must be passed.  Every 193 
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simple model developed for testing is published along with the complete source code for 194 

the NAADSM application. 195 

3.2.2.  Manual testing of NAADSM 196 

In addition to automated use of simple tests, manual testing using more complex 197 

situations has been carried out for the NAADSM framework.  Every aspect of the model 198 

framework is examined by analysts working independently of the programmers 199 

themselves to confirm that the model conforms to the published specification.  Any errors 200 

identified during manual testing are noted and must be corrected prior to public release. 201 

3.3.  The limitations of model verification 202 

Model verification procedures can be quite objective and thorough.  Many 203 

techniques developed in the field of software engineering can be rigorously applied to the 204 

programming of models (7, 55).  Model verification offers no answer, however, to the 205 

crucial questions “Is the model useful?” and “Is the model adequate for the purposes for 206 

which it was designed?”  Questions like these can be addressed by a variety of 207 

approaches that fall under the general heading of model validation. 208 

4. Model validation 209 

Validation refers to the process of determining whether a model is an acceptable 210 

representation of the system that it is intended to represent, given the purpose of the 211 

model or study (35, 52).  A more elaborate definition is provided by Schlesinger et al. 212 

(56): model validation is the “substantiation that a... model within its domain of 213 

applicability possesses a satisfactory range of accuracy consistent with the intended 214 

application of the model”.  It is important to note that “acceptable representation” in the 215 
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definition above does not connote an “accurate” or a “true” representation: Oreskes et al. 216 

(42) convincingly argued that it is impossible to establish that any particular model is an 217 

accurate representation of a natural system, and that the use of the term “validation” in 218 

this sense is highly misleading. 219 

4.1. The problem of model validation 220 

In contrast to the process of model verification, establishing the validity of models 221 

is not clear-cut, and can be quite problematic.  As McCarl (41) observed, “there is not, 222 

and never will be, a totally objective and accepted approach to model validation.”  The 223 

standards by which a model’s validation is judged are partly dependent upon the purpose 224 

of the model.  The validation of models designed strictly to address research questions 225 

(for example to generate and test hypotheses concerning population or disease dynamics 226 

or to identify new areas of research) does not have to be as stringent as the evaluation of 227 

models that will be used to inform operational management decisions.  When such 228 

decisions will be made on the basis of the results of modeling studies, we would wish to 229 

know that these studies are appropriate, accurate, and correct.  Given the difficulties 230 

associated with the study of very complex multifactorial problems, the subjective 231 

elements of modeling itself, and philosophical issues like those presented by Oreskes et 232 

al. (42), the threshold for the acceptance of models cannot be that of “proof” of their 233 

accuracy or validity.  Rather, this threshold should be that of reasonable confidence in the 234 

results produced by models.  As Holling (25) stated, “provisional acceptance of any 235 

model implies not certainty, but rather a sufficient degree of belief to justify further 236 

action.”  The task of model validation, as described here, is that of evaluating models in 237 
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order to have a justifiable level of confidence in their results before they influence policy 238 

or management decisions. 239 

It is often constructive to think of a model in a way similar to a scientific 240 

hypothesis.  An epidemiologic model, for example, represents the modelers’ hypotheses 241 

regarding the interactions among members of a population, the dynamics of disease in 242 

that population, mechanisms of disease spread, and the efficacy of different disease 243 

control measures.  As with any hypothesis, models should be tested and challenged.  As 244 

models are subjected to and withstand increasing levels of scrutiny in diverse situations, 245 

their credibility is increased.  Such models can then be applied to problems of 246 

management and policy with greater confidence, provided that it is always clearly 247 

understood that no model truly represents physical reality, and that the acceptance of any 248 

model must be subject to ongoing evaluation. 249 

What follows is not a set of methods that will prove that a model represents a real 250 

system, but rather a set of activities that might be undertaken to provide evidence which 251 

may either support or refute the hypothesis presented by a model.  Several authors 252 

present descriptions and detailed taxonomies of the methods used to assess model validity 253 

(33, 34, 50, 52).  Our intention in the following sections is to present and discuss the 254 

utility of some of these methods, together with examples of their application both from 255 

our own experience and from other published reports of animal disease modeling.  We 256 

would also refer readers to several excellent discussions of model validation, including 257 

those presented by Oreskes et al. (42), Rykiel (50), and Taylor (62). 258 
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4.2.  Conceptual validity 259 

A particularly useful – and a foundational – criterion for the validation of an 260 

epidemiologic model is the answer to the question “Does the structure of a model make 261 

logical and biological sense?”  This has been referred to as “conceptual validity” (50, 52).  262 

For a model to have conceptually validity, its theoretical underpinnings should be shown 263 

to be based on known and scientifically accepted properties of the system of interest, or at 264 

least on reasonable and justifiable assumptions about such properties.  Among some of 265 

the questions that might be addressed in assessing the conceptual validity of a model are 266 

the following: 267 

• Does the model fit the purpose or purposes for which it was designed? 268 

• Does the structure of the model sufficiently capture the relationships and 269 

interactions among components of the system being modeled? 270 

• Given the purpose of the model, are key components of the system absent from 271 

the model, or oversimplified?  Is additional detail necessary for any component? 272 

• Based on existing knowledge and experience, are the outcomes produced by a 273 

model reasonable? 274 

Review by independent subject matter experts (sometimes referred to as 275 

establishing “face validity”: 50) can be used as a means of assessment.  In order to 276 

facilitate such review, it is quite helpful to have a detailed document that describes the 277 

conceptual model, as described in Section 3.1.  Such a document can provide a basis for 278 

discussion and evaluation of the details of model operation.  The publication of model 279 

descriptions (5, 22, 26, 60) greatly facilitates the assessment of the conceptual validity of 280 

models. 281 
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Reliance on the peer-reviewed literature provides one avenue for the conceptual 282 

assessment of epidemiologic models.  The NAADSM development team has also taken a 283 

more direct approach, and has sponsored a series of meetings of subject matter experts, 284 

including epidemiologists, virologists, economists, policy makers, and other modelers, 285 

for the purpose of review of the NAADSM modeling framework (10, 64, 65).  The 286 

structure and assumptions of the modeling platform have been described in detail during 287 

these workshops, and discussion, suggestions, and advice are solicited from all 288 

participants.  The results of these expert panel evaluations are then used to guide future 289 

research and development. 290 

4.3.  The utility of data in model validation 291 

As noted in Section 2, it is possible to assess the conceptual framework apart from 292 

the data used to inform a model.  Empirical data are generally used in two ways during 293 

modeling: 1) input data are used to develop parameters that will influence model 294 

outcomes, and 2) data that represent the outcomes or results of a system (output data) are 295 

used to provide a basis for comparison with model-produced outcomes.  In a few cases, 296 

particularly for endemic disease situations, large amounts of both types of data may be 297 

available for models of disease spread in populations.  In many instances, however, we 298 

have access to information pertaining to only a single outbreak of disease in a particular 299 

set of circumstances.  Information collected during the 2001 outbreak of FMD in the 300 

United Kingdom, which has been widely used for modeling studies (13, 14, 28, 29, 53), 301 

represents one such dataset.  In still other cases, models are developed to explore 302 

hypothetical situations (5, 6, 15, 19, 44).  In these cases, some information is generally 303 
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established to inform model inputs, but there can be no data regarding the (nonexistent) 304 

system outcomes. 305 

Whatever the form or source of data used to inform models, their correctness and 306 

validity also should be considered.  As Rykiel (50) pointed out, there is no guarantee that 307 

available data necessarily provide a better or more accurate depiction of a real system 308 

than a conceptual model.  The process of ensuring so-called data validity (50, 52) can by 309 

itself be complex. 310 

Several authors have emphasized the notion that, in order to demonstrate validity, 311 

models should be tested against data not used during their construction (31, 59).  Green 312 

and Medley (20) indicated that such a step should be a requirement before a model is 313 

used to inform policy decisions.  This is one of several possible approaches that falls into 314 

the general category of “operational validation” (52). 315 

Although this suggestion seems straight-forward, its implementation for 316 

incompletely understood biological and epidemiologic systems is problematic.  First, it 317 

implies that reliable, valid data exist for at least two situations, for both the development 318 

of parameters and for comparison to actual system outcomes.  Second, this approach 319 

would require the existence of a suitable means of evaluation by which the similarity of 320 

model-produced outcomes to system outputs can be assessed.  Third, it implies that these 321 

situations are sufficiently dissimilar from one another that they represent unique tests of a 322 

model, but are still similar enough that exactly the same approach to modeling developed 323 

for one situation can be legitimately applied to the others.  We have already mentioned 324 

the first difficulty.  The remaining two problems are discussed below. 325 
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A variety of quantitative, statistical approaches to show the correspondence 326 

between model-produced outputs and outcomes generated by biological systems have 327 

been devised and applied in a few situations (12, 32, 36, 39, 47, 48, 49, 69).  Most of 328 

these approaches to what has been called statistical validation rely upon the existence of a 329 

large amount of data (i.e., many observations) pertaining to the outcome of the natural 330 

system, which limits their applicability to most situations of interest to animal disease 331 

modelers. 332 

Waller et al. (69) proposed the use of Monte Carlo hypothesis tests, which in 333 

essence compare a single set of outcome data from a real system to multiple model-334 

generated outcome datasets, and seek to answer the question “Do the observed data 335 

appear consistent with the model?” rather than the more typical question “Does the model 336 

appear consistent with the observed data?”  Although this approach is not without utility, 337 

it raises an additional question: how representative is any single outcome?  Among recent 338 

outbreaks of FMD in the United Kingdom, for example, is the 2001 outbreak, which 339 

resulted in the infection of over 2000 herds (1), more or less representative than the 2007 340 

outbreak, which produced only eight infected herds (2)?  How “consistent” would each of 341 

these two outcomes have to be with model-produced data in order to conclude 342 

affirmatively that the data are consistent with the model?  Efforts made to compare 343 

outcomes from epidemiologic models to data generated by individual outbreaks should 344 

be undertaken with care: such comparisons are potentially informative, but an 345 

overreliance on quantitative approaches for the evaluation of models may well be 346 

misleading. 347 
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The disparity between these two recent FMD outbreaks in the UK also illustrates 348 

the third potential problem raised above: the dissimilarities among outbreaks of even the 349 

same diseases in generally the same types of populations make it difficult to test a model 350 

against data not used during its construction.  As described in Section 2, the use of data is 351 

integral to model construction.  Although a conceptual framework of a model and the 352 

data used to inform a model are distinct and can (and should) be evaluated individually, 353 

output generated by a model is inseparable from the combination of these two elements.  354 

The correspondence of model output to a natural system cannot be evaluated without 355 

considering the conceptual model and the source data simultaneously. 356 

Although it is generally helpful to have detailed data, it may not be strictly 357 

necessary for a model to be built upon detailed empirical information for it to be useful as 358 

a source of information for policy development.  For example, Green et al. (19) 359 

developed a model of HPAI in domesticated poultry in Manitoba, Canada.  They 360 

compared several disease control strategies, one of which was the use of concentric zones 361 

with radii of several kilometers around infected premises, for disease surveillance, 362 

restriction of movement, and depopulation.  Although most of the parameters used in the 363 

models for this study were derived from expert opinion rather than empirical data, model 364 

results strongly suggested that the utility of such relatively small zones would be 365 

insufficient in the population and setting for which the study was conducted.  Results of 366 

this study are not definitive and do not prescribe a specific policy formulation, but they 367 

provided sufficient justification for, and have already prompted, a re-evaluation of 368 

existing approaches to surveillance (C. Green, personal communication). 369 

Comment: The manuscript by Green et 
al. is in the final stages of preparation, 
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for publication before this article appears 
in print. 
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4.4.  Validation of model components 370 

Although it is difficult to demonstrate the validity of an entire model by the means 371 

described above, especially in the absence of relevant data, it may be possible to assess 372 

the validity of some individual components of a more complex model.  This component-373 

based approach to validation is sometimes recommended (38).  An example is a recently 374 

completed validation of the process used in NAADSM to simulate animal movements and 375 

contacts among farm premises (C. Dubé, personal communication). 376 

Briefly, the objective of this study was to validate the contact component used in 377 

NAADSM by comparing simulated movements to real-world, farm-to-farm movements 378 

that had been recorded for adult milking cows in Ontario, Canada.  The study concluded 379 

that the approach used in NAADSM performed reasonably well in simulating average 380 

network characteristics observed in real-world movement data, but did not perform as 381 

well in simulating extreme upper percentiles of movement network components, 382 

involving rare but observed farms with excessively high shipment frequencies.  The 383 

results of this study will be used to inform future development, with the objective of 384 

providing better representations of actual events and greater confidence in the results of 385 

modeling studies. 386 

4.5.  Comparison of models 387 

Comparison of several independently developed models may be used to improve 388 

the level of confidence in the models tested.  This process of comparing the results of 389 

several models has been called “relative validation” (9). 390 

Dubé et al. (9) conducted a comparison of three simulation models using several 391 

relatively simple disease scenarios.  Among the findings of this comparison was that, 392 
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although statistically significant differences were observed among model outputs, results 393 

from all three models supported the same or very similar conclusions regarding 394 

approaches for disease control.  This finding could be used to increase the confidence of 395 

end users and decision makers in modeling results (9).  The results of a follow-up 396 

investigation that considered more complex scenarios are reported elsewhere in this issue 397 

(51). 398 

Several similar comparisons of models of the spread and control of animal disease 399 

have also been undertaken.  Vigre (68) reported on a comparison of mathematical and 400 

simulation-based models.  The differences identified were more substantial than those 401 

reported by Dubé et al. (9), and may reflect the broader distinctions between the 402 

fundamental assumptions made by the individual models.  Continued investigation in this 403 

vein would be quite helpful.  Gloster et al. (18) also recently reported on the comparison 404 

of several models of airborne dispersion of FMD virus.  Like Dubé et al. (9), they 405 

reported that the results of the models evaluated were broadly similar, but of course, 406 

highly dependent on the assumptions made and the data used by different groups of 407 

modelers. 408 

Loehle (36) identified the comparison of models as a component of the larger 409 

process of what he called structural analysis, or the evaluation of the inherent 410 

assumptions and the identification of deficiencies in different models.  Loehle argued 411 

that, because of the existence of such structural differences among models, and because 412 

the comparison of multiple models is the most effective way to identify and determine the 413 

effects of such differences, it is essential to have multiple modeling efforts directed 414 

toward addressing any important policy or management problem. 415 

Comment: My understanding is that 
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4.6.  Sensitivity analysis as a form of validation 416 

When data from real systems are limited, sensitivity analysis is sometimes 417 

suggested and used to inform model validation efforts (6, 27, 32).  Sensitivity analysis is 418 

used to determine the amount of influence that particular parameters have on model-419 

produced outcomes.  Sensitivity analysis can also be used to assess the conceptual 420 

validity of a model: if certain parameters are expected to be important in a system based 421 

on prior knowledge of that system, then sensitivity analysis should bear out these 422 

expectations (32). 423 

Of greater utility is the use of sensitivity analysis to determine which parameters 424 

in a model are important.  If a model includes parameters about which there is a high 425 

degree of uncertainty but which are shown by sensitivity analysis to have a substantial 426 

impact on model results, such parameters are good targets for additional research.  A 427 

broader discussion of the application of sensitivity analysis for animal disease modeling 428 

can be found elsewhere in this issue (61). 429 

5.  Suggestions for the construction of useful, credible models of animal 430 

disease 431 

As we have discussed in the preceding sections, the primary objective of model 432 

verification and validation efforts is not to demonstrate that a model is a true or even a 433 

highly accurate representation of a real system, but rather to provide a set of approaches 434 

and criteria by which a model can be evaluated.  For models that might be used as a 435 

partial basis for policy or management decisions, it is essential that such an evaluation 436 

establishes a foundation of support and credibility.  To that end, we suggest the following 437 

practical steps that members of the veterinary epidemiologic community can take to 438 
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produce credible, useful models of the spread and control of disease in animal 439 

populations.  These suggestions are drawn from our own experience, as well as from 440 

many of the other valuable sources cited throughout this article, in particular those 441 

written by Bart (3), Rykiel (50), Law and McComas (35), and Sargent (52). 442 

Clearly and precisely state the purpose for which a model was designed 443 

The importance of the first step illustrated in Figure 1, that of determining and 444 

then clearly and precisely stating the questions to be asked of a model, may seem self-445 

evident, but this step is often overlooked (3).  Overton (43) remarked that “the great 446 

majority of criticisms of models relate to a capacity for which the model was not 447 

designed in the first place.”  A clear understanding of the purpose of a model is a 448 

prerequisite for any further evaluation. 449 

Provide a detailed description of the conceptual model, and documentation concerning 450 

the assumptions and limitations of the model 451 

Virtually every paper on techniques for the verification and validation of models 452 

stresses the importance of documentation for the conceptual model (3, 33, 35, 52, 55).  A 453 

model description should not be produced solely, or even primarily, for the developers of 454 

an individual model.  Those who will derive the most benefit from the existence of such 455 

documents will be other model users, in the broadest sense of the term: other researchers, 456 

analysts, and decision makers who will be tasked with the application or evaluation of the 457 

model and its results.  It is particularly useful when model documentation includes 458 

discussions of assumptions and limitations, presented in ways that are clear and 459 

biologically relevant (21). 460 

Provide details of steps taken for model verification 461 
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At its most basic level, the credibility of a model relies upon the demonstration 462 

that the model, as implemented in software, does what it is supposed to do.  Anyone 463 

tasked with the evaluation of a model, particularly if it will be used to influence policy, 464 

should have sufficient access to a computational implementation of a model, details of 465 

the verification procedure employed, and to any tests used for verification purposes such 466 

that he or she can reproduce and evaluate the computational correctness of the model. 467 

Describe the data used to develop model parameters, and provide documentation for the 468 

approaches and assumptions used to produce model parameters from data 469 

The process of translating raw data into parameters suitable for use in models is 470 

seldom straight-forward.  An understanding of this process, however, is essential for 471 

reviewers to have an adequate basis by which to judge the results of a model.  Two recent 472 

reports illustrate this suggestion quite nicely: Mardones et al. (37) conducted a meta-473 

analysis based on 21 research papers and documented in detail the procedures that they 474 

used to estimate the durations of different disease states for FMD for the purpose of 475 

disease modeling.  In a different study, Patyk et al. (44) produced a model of the spread 476 

and control of HPAI in the US state of South Carolina.  This study included an online 477 

supplement that described in detail all of the sources of information used for the study, as 478 

well as the several computational tools that they developed and used for parameter 479 

development. 480 

In order to further support the objective of transparently presenting the process of 481 

parameter development, the research team behind NAADSM recently implemented an 482 

online, collaborative resource for the storage and organization of information used to 483 

develop simulation models.  In particular, this resource is designed to make it possible for 484 
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researchers to document and share the approaches, tools, and assumptions that they use to 485 

produce the input values that they use.  This parameter library, which is freely and 486 

publicly available via the Internet at http://www.naadsm.org/parameters, is currently 487 

optimized for users of the NAADSM modeling framework, but we hope that, as additional 488 

information becomes available for other models, we will be able to incorporate other 489 

approaches to modeling into the parameter library. 490 

Involve independent experts in the evaluation of models and their outcomes 491 

Veterinary epidemiologic modeling is an interdisciplinary undertaking.  Modelers 492 

can take advantage of a great deal of expertise in different fields by involving experts 493 

from these fields.  For models to be used for decision making, it is also essential to 494 

involve other stakeholders, for example, those who will be responsible for decision 495 

making or for implementing policies in the field, in this process.  In our own experience 496 

with NAADSM, we have found that, through its widespread application, we have 497 

benefited substantially from the efforts of others to use and evaluate it. 498 

A variety of forums for the sharing and discussion of veterinary epidemiologic 499 

modeling work have been available over the last several years (10, 64, 65, 66).  We 500 

encourage anyone involved with the construction, use, or evaluation of models to seek 501 

out and take advantage of such opportunities when they occur. 502 

When possible, use existing information for data-driven validation of models or their 503 

components 504 

We have discussed the limitations and advantages of this approach in Sections 4.3 505 

and 4.4 above.  Such approaches should be undertaken with care, and with the 506 

recognition that the results will not be definitive: a poor conceptual model may still 507 
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produce a good fit to observed data, and vice versa.  In situations where appropriate 508 

information is available, however, the comparison of model-produced outcomes to real 509 

data can still be enlightening.  Retrospective analysis of past outbreaks is critical to 510 

understanding them, and modeling can be a very useful tool in this pursuit (16, 30). 511 

Present a range of possible outcomes, including “best case” and “worst case” scenarios 512 

As we have discussed, models are not definitive representations of reality.  We 513 

are often uncertain about the ways in which at least some components of our systems 514 

operate, and also about specific parameter values.  Presenting a range of results is one 515 

way to capture some of this uncertainty. 516 

Use sensitivity analysis to determine the importance of parameters used in a model 517 

In addition to the benefits discussed in Section 4.6, the evaluation of the 518 

importance of model parameters – especially those for which data are limited – can be 519 

used to evaluate the potential effects of parameters about which we are uncertain. 520 

Compare the purposes, conceptual bases, and outcomes of different models 521 

During the modeling process, different modelers make different subjective 522 

decisions and assumptions.  Qualitative agreement among several models may lend 523 

credibility to the conclusions drawn from model-based studies.  Areas of disagreement 524 

among models should prompt additional research and investigation to improve our level 525 

of understanding of the system components in question. 526 

Finally, treat model evaluation as an ongoing process, not as settled fact 527 

Every epidemiologic model is a work in progress, informed and updated by 528 

existing and new knowledge about the dynamics of disease; changes in agricultural and 529 

social practices; and changes in the forms, sources, and quality of available data.  The 530 



 

 25

validity of any epidemiologic model should be continually reassessed under new 531 

conditions or as the state of our knowledge is improved. 532 

6.  Conclusions 533 

The careful evaluation of any model intended to inform management or policy 534 

decisions is a critical activity.  Two key steps in the assessment of the quality and utility 535 

of epidemiologic models are verification and validation.  Unfortunately, there are no 536 

purely quantitative, strictly objective means by which to evaluate models.  Each model, 537 

and each situation to which modeling will be applied, is at least somewhat unique, and 538 

unique means may be necessary to evaluate a model and its particular applications. 539 

Holling (25) pointed out that “provisional acceptance of any model implies not 540 

certainty, but rather a sufficient degree of belief to justify further action.”  We have 541 

outlined a set of recommendations that can be used by epidemiologic modelers to 542 

continue to cultivate a level of confidence in the application of the technique to important 543 

problems in animal population health.  Individual models will continue to be developed 544 

and compared, and will evolve as they are scrutinized.  Through these exercises, our 545 

collective objective of providing useful tools to assist in decision-making processes can 546 

be met. 547 

In order to achieve a sufficient level of credibility in model outcomes, it is 548 

essential to involve not just modelers in their evaluation.  As Rykiel (50) observed, “to 549 

the extent that a model is a scientific experiment and theoretical development, its testing 550 

and validation are within the purview of the scientific community.”  We agree, and would 551 

add that, in the case of models for animal diseases, the evaluation of models is also within 552 
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the purview of field epidemiologists and veterinary practitioners, policy planners and 553 

decision makers, and animal industry representatives. 554 
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