Workshop LNR-II.ZZ.SS: Diossine e PCB in alimenti e mangimi. 9-10 Dicembre 2010, Teramo

PCBs' dynamic in Tapes philippinarum studied by combining detoxification experiment and ecotoxicological model

Stefano Raccanelli & Simone Libralato

Consorzio INCA

Consorzio Interuniversitario Nazionale "La Chimica per l'Ambiente", Marghera, Italy [e-mail: stefano.raccanelli@unive.it]

Istituto Nazionale di Oceangrafia e di Geofisica Sperimentale - OGS Dept. Oceanography Trieste, Italy

The Venice Lagoon

Total surface of 550 km², made up of islands (44 km²), wetlands ("barene") and tidal flats ("velme")

average depth 1m; deep channels allow navigation (65 km²).

- ➡ 11 tributaries: average freshwater discharge ≈ 3x10⁶ m³ day⁻¹
- ⇒3 inlets: \approx 3.85x10⁸ m³ day⁻¹ of water are exchanged through the inlets with the sea.

Persistant Organic Pollutants (POPs) in the Venice Lagoon

Sources of POPs

Cities of Venice and Chioggia
Hurban areas mainland
Industrial area

Sediment Contamination

• Dioxins and other POPs are accumulated in the sediments

Fate of POPs in the Venice Lagoon

POPs in the biota of the Venice lagoon

Clam contamination

- Clams can be very contaminated
- high correlation between clam and sediment contamination

Raccanelli et al., Chemosphere, 2007

Clam fishery

- POPs concentrations in sediments up to 2500 ng I-TE kgdw⁻¹
- Industrial channels are important recruitment & growth areas for clam.
- Although banned clam harvesting is conducted illegally (2000∉day).

The Venice Lagoon

Collecting area

ontaminat

Detoxification experiment

In order to discourage illegal fishing & maintain exploitation opportunities, **detoxification experiments** were prompted by the local Administrative Council, i.e. the *Regione Veneto*

In

D

D

The experiments:

- SUMMER 2004 and WINTER 2006
- detoxification in natural conditions
- two detoxification areas (site 1 and site 2)
- samples of superficial sediments
- detoxification: 120 days long
- monitoring of PCB, PCDD/F, HCB concentrations in biota
- high frequency of sampling of biota
 (every 5 days) for measuring POPs on flesh
 and lipid basis

	PCDD/F WHO-TE (ng/kg dw)	PCB WHO-TE (ng/kg dw)	OCDF/ OCDD	HCB (µg/kg dw)
dustrial Zone	37.063	2.99	4.692	7.28
etox. site 1	0.24	0.006	0.395	0.05
etox. site 2	0.437	0.021	0.304	0.06

POPs in sediments

Superficial sediments (0-10 cm) of collecting site and detoxification

sites. Dioxins fingerprints highlighted indutrial contamination of sediments of collecting site (high OCDF/OCDD ratio).

	PCDD/F	PCB		
	WHO-TE (ng/kg dw)	WHO-TE (ng/kg dw)	OCDF/ OCDD	HCB (μg/kg dw)
ndustrial Zone	37.063	2.99	4.692	7.28
Detox. site 1	0.24	0.006	0.395	0.05
Detox. site 2	0.437	0.021	0.304	0.06

Rearing areas for detoxification experiment

The Venice Lagoon

Collecting ar

taminat

Detoxification of POPs in clam flesh

Total toxicity of Dioxins and PCB over time (on wet weight basis) and comparison with references

Dioxin fingerprint in clam flesh

During detoxification significant changes of the dioxin fingerprint over time

Dioxin fingerprints changed according with sediment supporting the strong relationship already found between sediment and clam contamination and **highlighting detoxification of clam from industrial contamination** Raccanelli et al., Env. Chem. Letters, 2008

Apparent detoxification rate

Assuming that concentration of a generic POP (CB) in bivalve depends on:

Modelling detoxification

The detoxification is a complex process that is influenced by the SEASON and DETOXIFICATION SITE (sediment).

More generally clam detoxification is a resulting from a set of different processes

An ecotoxicological modelling approach allows for an explicit representation of these processes, thus it permits for **extending** and **broadening** the findings of detoxification experiments, exploiting at best the information carried out by costly field measurements: **DESCRIBE, UNDERSTAND and FORECAST**.

Bioenergetic growth model

Represents dynamically (in time) the different physiological processes

Growth result from an energy balance function of water temperature (T), shellfish size (w), food available (Chla)

Bioenergetic growth model

A bioenergetic growth model for *Tapes philippinarum* has been already identified, calibrated and validated for the Venice Lagoon (see. Solidoro et al., 2000)

Giving measured evolution of temperature and chlorophyll the model predict clam growth...

..and all the dynamics through time of the physiological processes involved in living clam

Bioaccumulation model

Represents a balance between processes of uptake and cleaning of pollutant in clam flash

Concentration of pollutant in clam (C_B) is varying according to sediment (Cs) and food (C_D) concentration; it is depending on chemical properties of the pollutant (k_1 , k_D , k_E are function of K_{ow}) and is influenced by temperature (T)....

Ecotoxicological model

Ecotoxicological model

BIOLOGICAL PROCESSES: Flow of energy >> feeding, respiration, catabolism &

ECOTOX PROCESSES: bioaccumulation, bioconcentration & detoxification

(Kow, Koc)

Bioaccumulation model

Moreover, each process is also depending on a correspondent physiological process derived from the bioenergetic model.

Estimation of dioxins half-lives

Specific half-life for each dioxin congener in clam flash

Congeners	K _M	Half life	Calibration	Validation
	(days⁻¹)	(days)	R^2	R ²
2,3,7,8-TCDD	0.0867	7.99	97.1%	97.9%
1,2,3,7,8-PCDD	0.0654	10.59	93.0%	91.9%
1,2,3,4,7,8-HCDD	0.0542	12.80	83.2%	82.1%
1,2,3,6,7,8-HCDD	0.0514	13.48	85.9%	83.2%
1,2,3,7,8,9-HCDD	0.0533	13.00	84.2%	83.8%
1,2,3,4,6,7,8-HpCDD	0.0385	17.98	69.6%	69.5%
1,2,3,4,6,7,8,9-OCDD	0.0339	20.47	63.3%	62.5%
2,3,7,8-TCDF	0.0250	27.72	78.9%	73.6%
1,2,3,7,8-PCDF	0.0471	14.73	83.9%	83.7%
2,3,4,7,8-PCDF	0.0381	18.19	71.2%	72.6%
1,2,3,4,7,8-HCDF	0.0626	11.07	84.5%	86.1%
1,2,3,6,7,8-HCDF	0.0534	12.97	82.3%	82.6%
2,3,4,6,7,8-HCDF	0.0454	15.26	80.0%	78.7%
1,2,3,7,8,9-HCDF	0.0946	7.33	95.2%	98.6%
1,2,3,4,6,7,8-HpCDF	0.0573	12.09	75.2%	79.6%
1,2,3,4,7,8,9-HpCDF	0.0832	8.33	86.2%	91.1%
1,2,3,4,6,7,8,9-OCDF	0.0578	12.00	70.7%	77.8%

Range from a minimum of 7 to a maximum of 28 days for 1,2,3,7,8,9 HCDF and 2,3,7,8 TCDF, respectively. These values, not surprisingly, are larger than those estimated from apparent detoxification rates

Calibration and validation (some examples)

Estimation of dioxins half-lives

0.01

0.001

50

250

300

represents quite well the final toxicity level due to dioxins observed in the field experiment

Represents roughly the first phase of sharp decreasing toxicity, evidencing the need for further analysis.

Conclusions and future directions

Sediments in areas surrounding the Industrial areas of the Venice Lagoon are still highly contaminated by POPs. Products/yields of illegal fishing for clams represent an important risk for human health both directly and indirecly.

The possibility to subtract clams from the industrial area and detoxify them naturally for consumption represent a valuable possibility for eliminating illegal fishing and preserve human health.

This work demonstrates the high potential of a coupled bioenergetic and biaccumulation model for describing the dynamics of POPs in clam flash.

This model can be applied to different areas of the lagoon (different sediment contamination) for estimating specific safe detoxification times, accounting for sediment, environmental conditions, food uptake and all detoxification processes

The model supports the possibility (proposed by local authority) for eliminating illegal fishing and reducing human heath risks.

Workshop LNR-II.ZZ.SS: Diossine e PCB in alimenti e mangimi. 9-10 Dicembre 2010, Teramo

For details and questions on the modelling approach, please write to:

Simone Libralato Email: <u>slibralato@ogs.trieste.it</u>

Istituto Nazionale di Oceangrafia e di Geofisica Sperimentale - OGS Dept. Oceanography, Trieste, Italy

Peace 평화 Bariş

शांतf Friede 기교 和平 Мир Раz

"Uniformare raccolta dei dati e i metodi di trasmissione" G. Migliorati 2009

àF_ n ftujfsj! di f! mf! pttfswb { jpo j! douuf! dpo! n fupej! f! dpo! n f{{j! vojopsnj!tjbop!usbtnfttf!be!vo! tomp! vogjdjp p! be! vob! tomb! ejsf{jpof-! dpo! phoj! dvsb! dpn qbsbuf! f! e jtdv ttf-! f! rv jo e j! sftf!jn n fe jbubn fouf!e j!qv ccmjdb! sbhjpo f,

Qbesf!Gsbodftdp E fo {b 2983

àOpo!cbtub!mbwfsf!tubcjmjub!!vob! cvpob! wfefuub!ej! n fufpspmphjb<! n b!jn qpsub!hsboefn fouf!ufofsmb! e_pddijp-!fevdbsmb!f!tpssfhhfsmb!ej! dpoujovp bggjodi - qpttb!qspevssf!j! eftjefsbuj!gsvuuj

Qbesf!GsbodftdpEfo{b-!Qsjnp!Dpohsfttp! Joufsob{jpobmf!ejNfufspmphjb-!Wjfoob!2984

Da Filosofia delle Nuvole, Luca Mercalli e NIMBUS, n° 5:11-20 1994

Ecotoxicological model

BIOLOGICAL PROCESSES: Flow of energy >> feeding, respiration, catabolism &

ECOTOX PROCESSES: bioaccumulation, bioconcentration & detoxification

processes

growth

ECOTOXICOLOGICAL MODEL FOR CLAM =

BIOENERGETIC GROWTH MODEL + BIOACCUMULATION/DETOXIFICATI ON MODEL

TEMPERATURE (°T), LIPIDIC AFFINITY (Kow, Koc)

TEMPERATURE (°T), FOOD, SIZE