

Population genetic structure and diversity

- ☐Great diversity of strains: genetic make-up / virulence level
- Few clonal groups = "major clones": majority of outbreaks in France and in the word (Ragon et al., 2008, Plos Pathogens; Chenal-Francisque, V. et al., 2011 JCM; 2013 JCM; Cantinelli et al., 2013, JCM)
- □Sporadic human cases in France and in the world: mostly caused by isolates that belong to these clones (Ragon et al., 2008, Plos Pathogens; Haase et al. 2011 Environ Microbiol; Chenal-Francisque, V. et al., 2011 JCM; 2013 JCM; Cantinelli et al., 2013, JCM)

Population genetic structure and diversity

☐ Limited data on these clones:

Lack of information on

- → Diversity according to the sources (human,animals,food)?
- → Distribution according to the different food sectors ?

Diversity and evolution of serotypes within lineages

(Brisse, EURL workshop, Maisons-Alfort, 2012)

CC7

0.05

CC101

CC9

- EGDe (1/2a)

1/2a

1/2a

- Lineages and serotypes are heterogeneous
 - 4b monophyletic, evolved from 1/2b
 - 1/2c recently derived from 1/2a
 - EGDe: '1/2a with 1/2c genome'

Molecular serotyping

- •The first-line approach
- •The European standard for typing tool: (Doumith et al., 2004)

Limitations:

- -Strains such as 1/2a EGDe strain: not grouped into the expected molecular serogroup: IIc instead of IIa (Doumith et al., 2004)
- -The variant profile of serogroup IVb, characterized by the amplification of a supplementary gene fragment (Imo0737 gene fragment). Graves LM et al 2007; De Vasconcelos et al., 2008; Huang B et al., JCM 2011; Leclercq et al., 2011

2013 Whole genome deposited at GenBank (5 strains)

Fine genomic characterization /pan-genomic

microarray.: Laksanalamai et al., 2014, Plos one;

Crucial to develop a new phylogenic scheme

PFGE

- *The current international standard for subtyping (Graves & Swaminathan, 2001)
- Still useful tool to investigate outbreaks

limitations:

- Explore only a limited area of the bacterial genome.
- ☐ It Does not show the relatedness between strains.
- □ DNA methylation can make restriction sites invisible to enzymes

Anses/EURL research program

3 Aims:

- ☐ To assess cutting-edge technology such as NGS as a molecular typing tool; to compare it to the Standard typing methods (PFGE, MLST...);
- ☐ To define another typing new phylogenic scheme;
- ☐ To identify the genetic factors that may explain the virulence differences observed within the strain populations.

- 1. To compare the genetic diversity of animal, food and clinical strains in Europe
- 2. Identify genomic determinants underlying virulence. Novel diagnostic Targets/signatures
- 3. Transform bacterial with the identified factors to determine whether these factors are involved in strain virulence
- 4. Screen markers of interest on a large strain population
- 5. Develop rapid molecular tests to detect potentially pathogenic strains.

- Compare the genetic diversity of animal, food and clinical strains in Europe
- 2. To find and to compare genomic determinants underlying virulence factors = Novel diagnostic targets/signatures
- 3. Transform bacterial with the identified factors to determine whether these factors are involved in strain virulence
- 4. Screen markers of interest on a large strain population
- 5. Develop rapid molecular tests to detect potentially pathogenic strains.

- Compare the genetic diversity of animal, food and clinical strains in Europe
- 2. Identify genomic determinants underlying virulence. Novel diagnostic Targets/signatures
- 3. To transform bacterial with the identified factors to confirm or not whether these factors are involved in strain virulence
- 4. Screen markers of interest on a large strain population
- 5. Develop rapid molecular tests to detect potentially pathogenic strains.

- Compare the genetic diversity of animal, food and clinical strains in Europe
- 2. Identify genomic determinants underlying virulence. Novel diagnostic Targets/signatures
- 3. Transform bacterial with the identified factors to determine whether these factors are involved in strain virulence
- 4. To screen markers of interest on a large strain population
- 5. Develop rapid molecular tests to detect potentially pathogenic strains.

- Compare the genetic diversity of animal, food and clinical strains in Europe
- Identify genomic determinants underlying virulence. Novel diagnostic Targets/signatures
- 3. Transform bacterial with the identified factors to determine whether these factors are involved in strain virulence
- 4. Screen markers of interest on a large strain population
- 5. To develop rapid molecular tests to detect potentially pathogenic strains.

Research project EFSA/BIOCONTAM/2014/01

Comparison of isolates from different compartments along the food chain, and from humans using whole genome sequencing (WGS) analysis

Background

- Scientific opinion of the BIOHAZ Panel (2008):
 - Request for updating the former SCVPH opinion on *Listeria monocytogenes* risk related to ready-to-eat foods and scientific advice on different levels of *Listeria monocytogenes* in ready-to-eat foods and the related risk for human illness

http://www.efsa.europa.eu/en/efsajournal/pub/599.htm

- Scientific reports of EFSA:
 - Analysis of the baseline survey on the prevalence of *Listeria monocytogenes* in certain ready-to-eat foods in the EU, 2010-2011 Part A: *Listeria monocytogenes* prevalence estimates (2013)

http://www.efsa.europa.eu/en/efsajournal/pub/3241.htm

 Analysis of the baseline survey on the prevalence of *Listeria monocytogenes* in certain ready-to-eat foods in the EU, 2010-2011 Part B: analysis of factors related to prevalence and exploring compliance (2014)

http://www.efsa.europa.eu/en/efsajournal/pub/3810.htm

Background

- External scientific reports:
 - Statistical analysis of the Listeria monocytogenes EU-wide baseline survey in certain ready-toeat foods Part A: Listeria monocytogenes prevalence estimates (2013)

http://www.efsa.europa.eu/en/supporting/pub/441e.htm

Statistical analysis of the Listeria Monocytogenes EU-wide baseline survey in certain ready-to-eat foods Part B: analysis of factors related to the prevalence of Listeria Monocytogenes, predictive models for the microbial growth and for compliance with food safety criteria (2014)

http://www.efsa.europa.eu/en/supporting/pub/606e.htm

- Scientific colloquium report (to be published by January 2015):
 - Use of WGs of food-borne pathogens for public health protection

Closing gaps for performing a risk assessment on *L. monocytogenes* in ready-to-eat (RTE) foods (Launching tender with 3 activities - 2014)

Objectives

- To carry out the molecular characterisation of a selection of
 L. monocytogenes isolates from different sources, i.e. RTE foods,
 compartments along the food chain (e.g. food producing animals, food
 processing environment), and humans employing WGS analysis
- To analyse the WGS typing data of the selected *L. monocytogenes* isolates with three goals:
 - To explore the genetic diversity of *L. monocytogenes* within and between the different sources and human origin;

Objectives

- To assess the epidemiological relationship of *L. monocytogenes* from the different sources and of human origin considering the genomic information and the metadata available for each isolate;
- To identify the presence of putative markers conferring the potential to survive/multiply in the food chain and/or cause disease in humans (e.g. virulence and antimicrobial resistance).
- To perform a retrospective analysis of outbreak strains

 (i.e. using a subset of epidemiologically linked human and
 food isolates) to investigate the suitability of WGS as a tool in
 outbreak investigations

EFSA contacts

• Scientific - main contact point:

MariaTeresa.DASILVAFELICIO@efsa.europa.eu

Additional team members following this project:

Winy.MESSENS@efsa.europa.eu

Ernesto.LIEBANACRIADO@efsa.europa.eu

Four partners

- SSI, DK-NPHL, contractor for ECDC: Coordinator (Eva Moller-Nielsen, Jonas T Larsson)
- PHE , UK NRL-NPHL (Corinne Amar, Kathie Grant, Tim Dallman)
- Aberdeen University, UK (K Forbes; N. Strachan)
- Anses (EURL Listeria monocytogenes), FR (L. Guillier, B. Félix,
 S. Roussel)

Milestones

 About 1000 human and food strains selected (19 December 2014) (deliverable 1)

• The whole panel: sequenced at PHE from March 2015