

# Presentation of the IT tool of STARTEC project

### Taran Skjerdal on behalf of the STARTEC team





#### Decision support tools for food producers to ensure safe, tasty and nutritious ready-to-eat products for healthy and vulnerable consumers

KBBE.2011.2.4-01: Safety and quality of ready-to-eat foods



#### Advisory board: Dr Annie Beaufort, ANSES, Dr Knut Framstad, Nortura, Dr Petra Luber, BfR, External expert: Dr Matthias Filter, Bfr





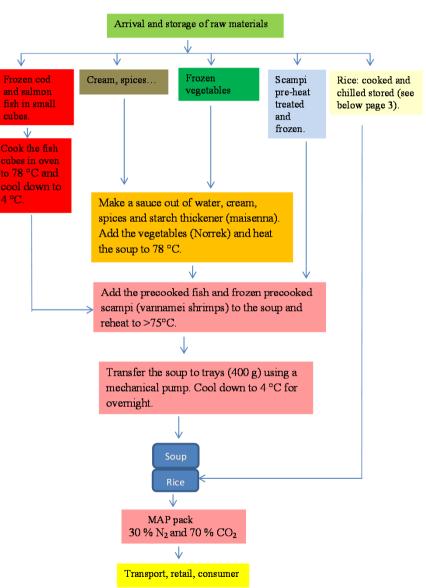
### Project background and idea

- Ready-to-eat and convenient products are very common.
- Some consumers have no other choice, even though some of them like to cook.
- Food producing industry must make a lot of choices, including trade-offs between quality, safety and costs.
  - Difficult and complicated decisions, particularly for combined RTE and convenient products
  - Decisions have to be done quickly
  - Large consequences of wrong desisions, both for company and consumers





### **Objectives of STARTEC (summary)**


- Develop decision support tools to make relevant trade-offs between food safety, food quality and costs without compromising consumer health.
- Develop processes and strategies for «extra safety level», «extra quality level» and «extra nutrition level» situations





## Process maps may be very complex

- Logistics
- Material flow
- cross contaminations
- New information: learned how industry dealt with the complexity and
- when decision support is needed



Processes map for fish soup production process



## Main output: decision support tool

Based on an overview of the *real options* the industry can use to manage the complexity, food safety, quality, nutrition and cost challenges, it is possible to

- Categorise in good, marginal, poor rather than very detailed results
- Make multidiciplinary tradeoffs based on research based models developed within STARTEC
- Give examples of corrective actions based on research in STARTEC

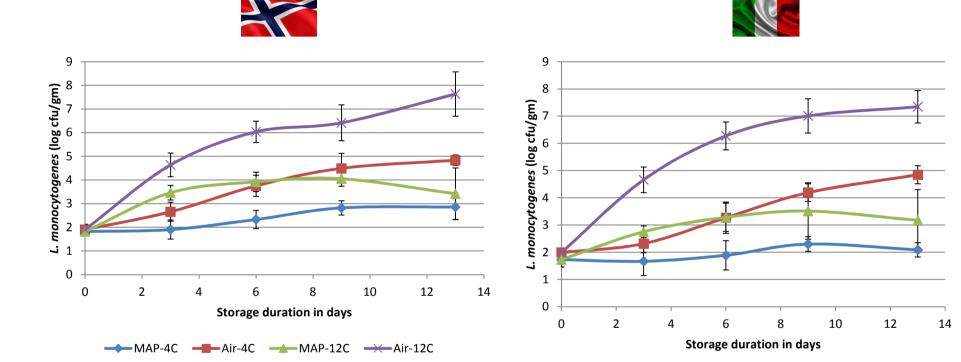
### We have a prototype with high potential for

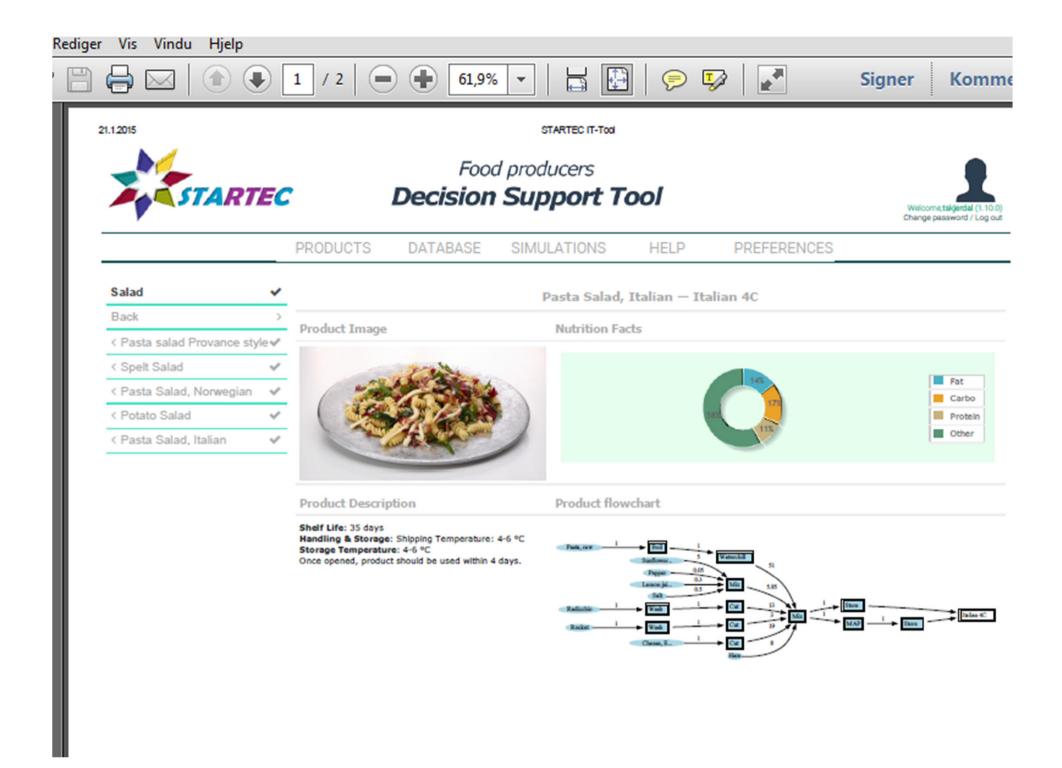
further development



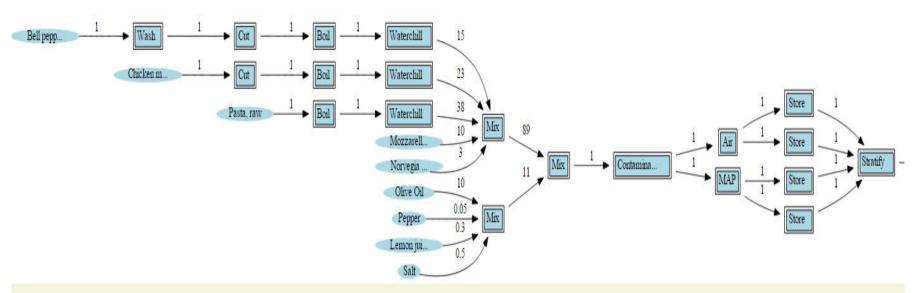


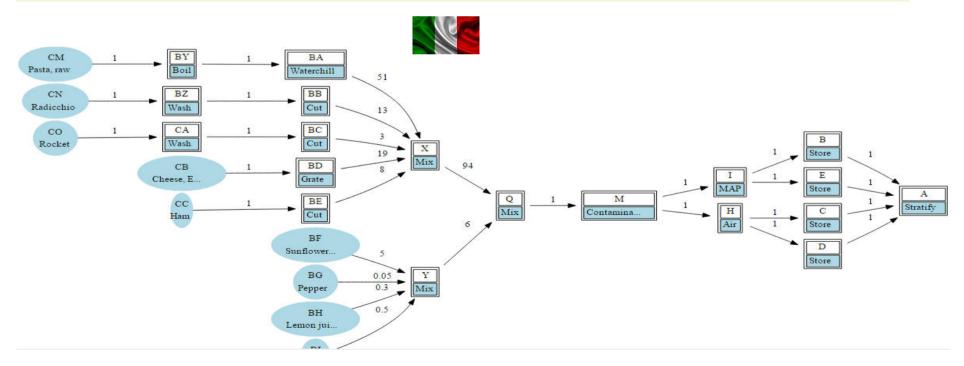
- Cooked pasta, meat, vegetables, two styles
- Growth of *L. monocytogenes* 
  - Primary model: Barany no-lag
  - Secondary model: Rosso, gamma concept


### In addition:


• Guidelines built on growth potentials

Multidisciplinary approach partly implemented, can be further developed





#### Growth of *L. monocytogenes* in two types of pasta salads under different packaging and storage scenarios

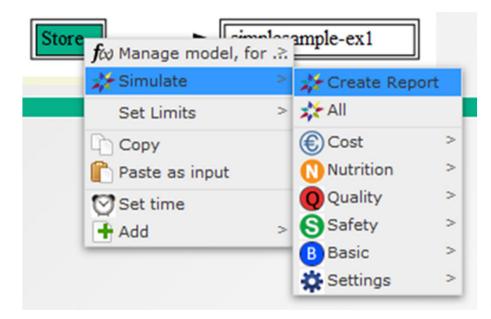










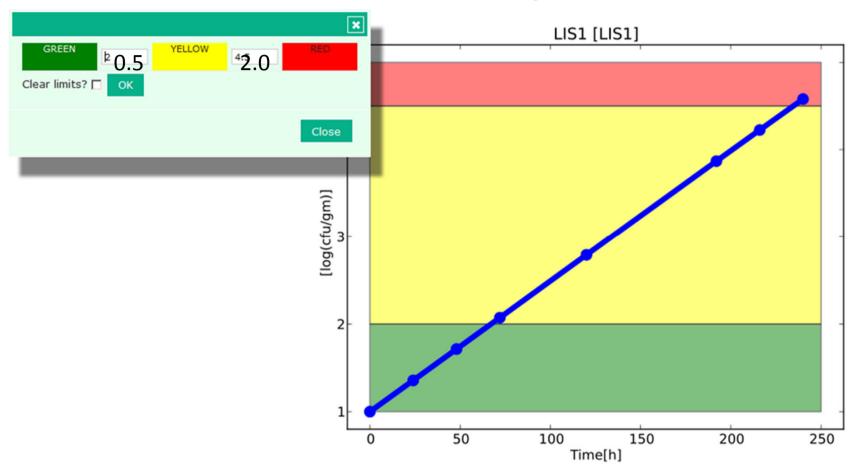

## Data, models and categories can be inserted bu the user

|    | name                                          | formula                                                                                                                                                                                                                                                                           | Author               |
|----|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1  | Constant                                      | OUTPUT = c                                                                                                                                                                                                                                                                        | Unknown              |
| 2  | baranyi_no_lag                                | $ m=1 \ ; \ b = log(1+(e^{**}(m^*mu\_max^*time)-1)/(e^{**}(m^*(x\_max-INPUT)))) \ ; \ OUTPUT = INPUT + mu\_max^*time \ -1/m^*b $                                                                                                                                                  | Silvia Vitali        |
| 3  | gamma_T_pH                                    | num = (T-Tmax)*((T-Tmin)**2); den = (Topt-Tmin)*((Topt-Tmin)*(T-Topt)-<br>(Topt-Tmax)*(Topt+Tmin-2*T)); gamma_T = num/den; num_pH =<br>(pH-pH_min)*(pH-pH_max); den_pH = (pH-pH_min)*(pH-pH_max)-<br>(pH-pH_opt**2; gamma_pH = num_pH/den_pH; OUTPUT =<br>mu_opt*gamma_T*gamma_pH | Silvia Vitali        |
| 4  | gamma_0                                       | num=(X-X_max)*((X-X_min)**n); den = ((X_opt-X_min)**(n-1))*((X_opt-<br>X_min)*(X-X_opt)-(X_opt-X_max)*((n-1)*X_opt+X_min-n*X)); gamma =<br>num/den; OUTPUT = gamma * (X>X_min) * (X <x_max)< td=""><td>Silvia Vitali</td></x_max)<>                                               | Silvia Vitali        |
| 5  | gamma_m                                       | OUTPUT = mu_opt*gamma_T*gamma_pH                                                                                                                                                                                                                                                  | Silvia Vitali        |
| 6  | linear                                        | OUTPUT = INPUT +c*time                                                                                                                                                                                                                                                            | Silvia Vitali        |
| 7  | LAB-LM stop                                   | OUTPUT = mu*(LAB < limit)                                                                                                                                                                                                                                                         | Taran Skjerdal       |
| 8  | lower_better                                  | OUTPUT = 'GREEN' if (X                                                                                                                                                                                                                                                            | Andras Gefferth      |
| 9  | Energy (kcal)                                 | OUTPUT=4*P+4*C+9*F                                                                                                                                                                                                                                                                | Gonzalo Delgado      |
| 10 | Quality Index - Pasta Salad,<br>I - noMAP 12C | OUTPUT=-0.0002*time0**2-0.0137*time0+5                                                                                                                                                                                                                                            | Konstantia Georgouli |
| 11 | Quality Index - Pasta Salad,<br>I - MAP 12C   | OUTPUT=-6*10**-5*time0**2-0.0013*time0+5                                                                                                                                                                                                                                          | Konstantia Georgouli |
| 12 | quadratic                                     | OUTPUT = maximum(1,A* time0**2 + B * time0 + C)                                                                                                                                                                                                                                   | Andras Gefferth      |
| 13 | higher_better                                 | OUTPUT = 'GREEN' if (X>GREEN_LIMIT) else 'YELLOW' if (X>YELLOW_LIMIT) else 'RED'                                                                                                                                                                                                  | Andras Gefferth      |
| 14 | gamma_X                                       | OUTPUT = mu_opt * gamma_T * gamma_pH * gamma_LAB * gamma_CO2                                                                                                                                                                                                                      | Andras Gefferth      |
| 15 | gamma_LAB                                     | OUTPUT = maximum(0,(1-LAB/LAB_max))                                                                                                                                                                                                                                               | Andras Gefferth      |
| 16 | Product                                       | OUTPUT = A*B                                                                                                                                                                                                                                                                      | Andras Gefferth      |
| 17 | Product2                                      | OUTPUT = INPUT * c                                                                                                                                                                                                                                                                | Andras Gefferth      |
| 18 | Store                                         | OUTPUT = cost_DAYstore * time                                                                                                                                                                                                                                                     | Marco Boeri          |
| 19 | fixed increase                                | OUTPUT = INPUT0 + c                                                                                                                                                                                                                                                               | Marco Boeri          |
| 20 | TimeTemp                                      | OUTPUT = Temp1 if time0 < t1 else Temp2 if time0 < t2 else Temp3 if time0 < t3 else Temp4                                                                                                                                                                                         | Andras Gefferth      |
| 21 | Sine                                          | OUTPUT = c1 + c2 * sin(time0*2*pi*freq)                                                                                                                                                                                                                                           | Andras Gefferth      |
| 22 | sum_of_5                                      | OUTPUT = A+B+C+D+E                                                                                                                                                                                                                                                                | Marco Boeri          |
| 23 | Vit C Retention                               | k=18533.907*e**(-3221/(273.15+T)); OUTPUT=100-k*time0                                                                                                                                                                                                                             | Gonzalo Delgado      |

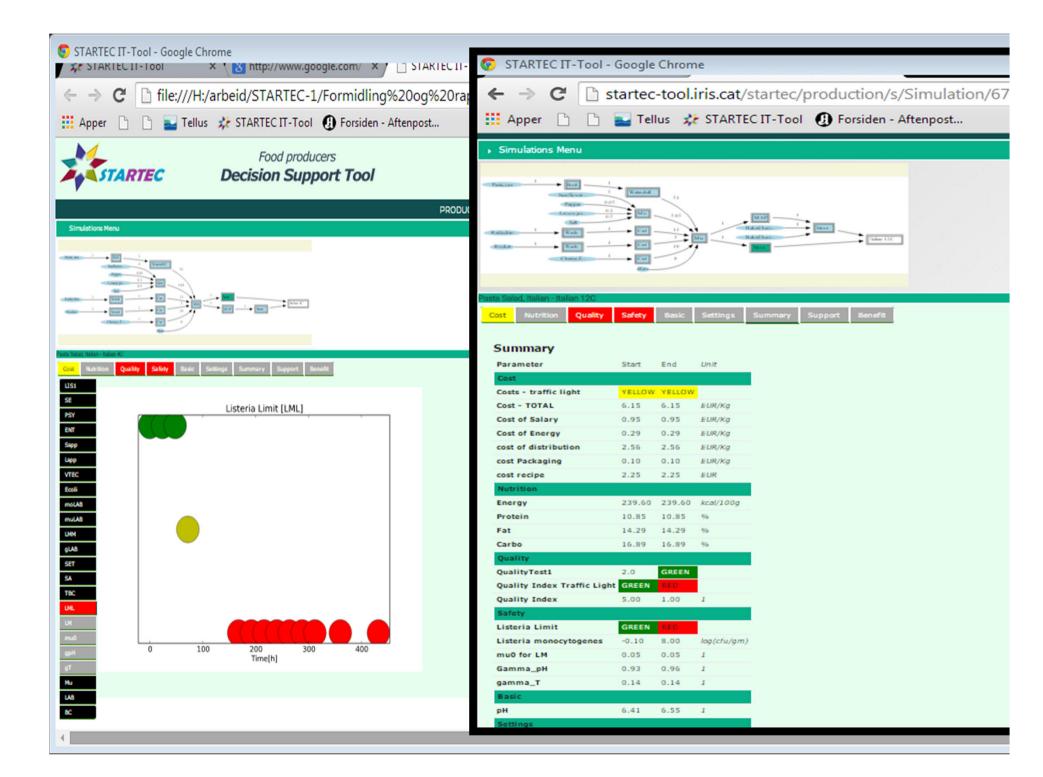




# Customised models and support information

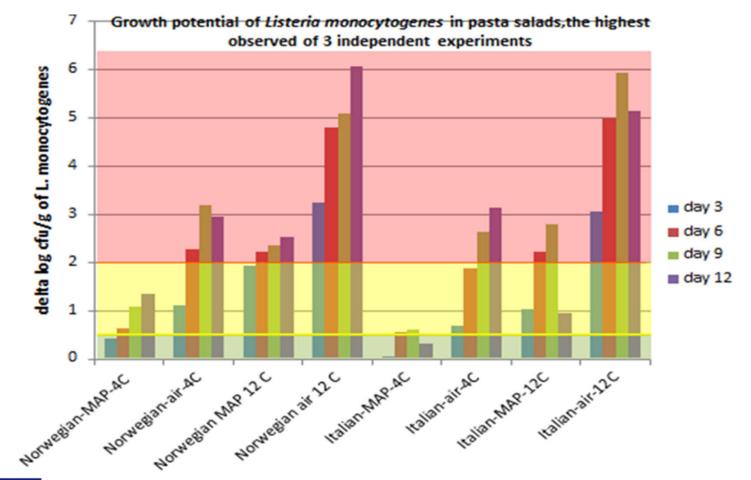



| Support Information                     |  |  |  |  |  |
|-----------------------------------------|--|--|--|--|--|
| Guidelines_and_corrective_actions.pdf   |  |  |  |  |  |
| Support Documents                       |  |  |  |  |  |
| EU_Reg_2073.pdf<br>EU_Reg_1441_2007.pdf |  |  |  |  |  |






### Simulation outputs










# Simpler approach based on growth potentials included in the guideline documents







# Maximum initial limit values to avoid 100 cfu/g during shelf life

| Maximum initial <i>L. monocytogenes</i> level (cfu/g) to avoid levels above 100 cfu/g on the |                     |         |         |         |  |  |  |  |
|----------------------------------------------------------------------------------------------|---------------------|---------|---------|---------|--|--|--|--|
| last day of shelf life                                                                       |                     |         |         |         |  |  |  |  |
| salad formulation, packing and                                                               | shelf life on label |         |         |         |  |  |  |  |
| storage condition                                                                            | 3 days              | 6 days  | 9 days  | 12 days |  |  |  |  |
| Norwegian-MAP-4C                                                                             | 37                  | 23      | 8       | 5       |  |  |  |  |
| Norwegian-air-4C                                                                             | 8                   | 0,5     | 0,06    |         |  |  |  |  |
| Norwegian MAP 12 C                                                                           | 1                   | 0,6     | 0,4     | 0,3     |  |  |  |  |
| Norwegian air 12 C                                                                           | 0,06                | absence | absence | absence |  |  |  |  |
| Italian-MAP-4C                                                                               | 85                  | 28      | 24      |         |  |  |  |  |
| Italian-air-4C                                                                               | 20                  | 1       | 0,2     | 0,07    |  |  |  |  |
| Italian-MAP-12C                                                                              | 9                   | 0,6     | 0,2     |         |  |  |  |  |
| Italian-air-12C                                                                              | 0,085               | absence | absence | absence |  |  |  |  |





Possible corrective actions to improve the food safety (I)

- Small changes:
  - Shorter shelf life, lower storage temperature, pack in modified atmosphere
- Change processes and formulations:
  - Additives like lactate and acetate
  - Additional preservation techniques, High pressure treatment and lactic acid bacteria. Some dairy products can be used instead of protective cultures

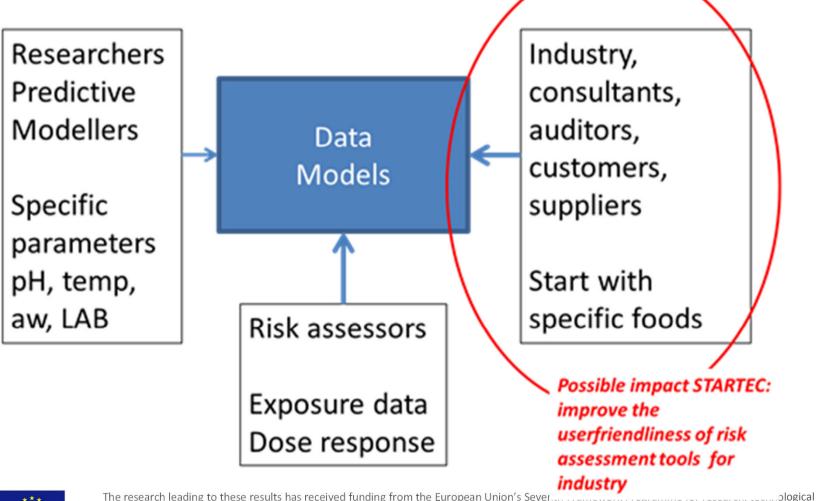




# Possible corrective actions to improve the food safety (II)

- Internal control system: Sample where it is likely to find *Listeria*.
- Recalls may not be needed if the growth potential under reasonable foreseeable conditions is low and the initial *L. monocytogenes* level below the one in the performance objective






# Possible ways forward to obtain a really useful tool





## Relevance of STARTEC tool (I) User interface







### Relevance of the STARTEC tool (II) Multidiciplinarity – specific functionalities

Customised flow charts Conditions Specific models

Tradeoffs for specific foods and scenarios based on categorisation, trendanalyses etc



. . .

. . .



### More ways forward

**Other tools** 

### Prototype STARTEC Tool and guidelines

### Improved STARTEC tool and guidelines

#### Functions and models



## In NRL/EURL challenge study context

# Question from industry: How different must a sausage be from another before a new challenge test is needed?

- Data for single and mixed products can be collected in the database in the STARTEC tool, and new data be compared
- Two suitable test products found in STARTEC: secondary models valid in one, but not the other. Sausages are different if they overrule the known growth pattern in mixed products

Good ideas or not?





### Our web site: <u>www.STARTEC-net.info</u> The tool: <u>www.startec-tool.iris.cat</u>

If you want to try it, ask for a password taran.skjerdal@vetinst.no



