Impact of pooling pre-enriched test portions on the detection of L. monocytogenes in food. 9th workshop of the NRLs for *L. monocytogenes* 25 - 27 March 2015 Nathalie GNANOU-BESSE Jean-Christophe AUGUSTIN #### **ISO/DIS 6887-1** # Preparation of test samples, initial suspension and decimal dilutions for microbiological examination - General rules Clause 9.3: Pooling and compositing procedures for qualitative tests, Annex A Annex D: Verification protocol Little reliance should be placed on the results of a single trial and the chosen protocol should be repeated at least 5, and ideally 8 to 10, times using different samples of the same matrix type/target microorganism combination. # Impact of wet pooling samples on the performance of EN ISO 11290-1 Standard ▶ Development and validation of a modelisation of L. monocytogenes growth along pre-enrichment in half-Fraser Use of the model to estimate loss of sensitivity in case of pooling # Evolution of *L. monocytogenes* populations in naturally contaminated food samples undergoing enrichment culturing and possibility to reduce 2nd enrichment duration (Gnanou Besse et al. 2015 submitted) Enumeration of enrichment broths of 77 naturally contaminated samples Evolution of *L. monocytogenes* population With other *Listeria* species Without other *Listeria* species ### Half-fraser Observed increase **♦** Concentration at 24 h = [0-8.8] log cfu/ml ### Half-fraser **♦** Concentration at 24h (log 10 cfu/ml) - Variability depends on : - Initial concentration (Ci) - Growth rate - Initial physiological stage (probability to multiply and lag) - N max # Modelisation of growth ♦ Variability of Ci, growth rate (34 values) and Nmax Overestimation of contamination (mean: 6.2 log cfu/ml vs 4.6 log cfu/ml observed) # Modelisation of growth ♦ Variability of Ci, growth rate (34 values), Nmax and individual cell lag time distributions (Dupont and Augustin 2009: influence of stress on single-cell lag time and growth probability for L. monocytogenes in half Fraser broth) Both observed and predicted concentrations have a mean of 4.6 # Modelisation of growth Model validated for L. monocytogenes behaviour during half Fraser enrichment Use of the model to estimate loss of sensitivity in case of pooling of pre-enrichment broths #### Initial natural contamination ♦ Initial contamination = Results of Baseline survey 2010-2011, for packaged hot or cold smoked or gravad fish at sampling | Detection Testing | Enume | ration testing: at least 10 (| cfu/g | |--------------------------|----------|-------------------------------|-------| | | Negative | Positive | Total | | Negative | 2 740 | 2 | 2 742 | | Positive | 247 | 64 | 311 | | Total | 2 987 | 66 | 3 053 | | | L. monocytogenes count (cfu/g) | | | | | | | | |---------------------|--------------------------------|-------|--------|-----------------|--------------------|----------------------|-----------|-------| | | < 10 ^(b) | 10-39 | 40-100 | > 100-
1 000 | > 1 000-
10 000 | > 10 000-
100 000 | > 100 000 | Total | | Total No of samples | 2 987 | 18 | 19 | 20 | 5 | 2 | 2 | 3 053 | # Use of the model to estimate Lm population after half-Fraser enrichment and loss of sensitivity in case of pooling of broths - ♦ Enriched Half-Fraser or enriched Half- Fraser diluted 1/5 - **♦** Final concentration | Concentration (cfu/ml) | [0.004-
10[| [10-
10 ² [| [10 ² -
10 ³ [| [10 ³ -
10 ⁴ [| [10 ⁴ -
10 ⁶ [| ≥106 | |------------------------|----------------|---------------------------|---|---|---|------| | Single enrichment | 18% | 10% | 15% | 17% | 27% | 13% | | Pooled enrichment | 24% | 14% | 17% | 16% | 22% | 7% | #### Probability of detection | Detection threshold (cfu/ml) | I 0 ² | I 0 ³ | I 0 ⁴ | |------------------------------|------------------|------------------|------------------| | Single enrichment | 72% | 57% | 40% | | Pooled enrichment | 62% | 45% | 29% | > Loss of sensitivity ~ 10% #### ISO/DIS 6887-I # Preparation of test samples, initial suspension and decimal dilutions for microbiological examination - General rules #### **♦** Annex D: Verification protocol for pooling samples Use a standard suspension of an appropriately stressed strain (see ISO 16140-2) of the test microorganism appropriate to the method being investigated. Inoculate test portions of the matrix at a level of approximately 5 cfu per 25 g (or ml) The stress conditions applied should mimic the type of stress encountered by the target microorganism when present in a naturally contaminated sample of the product or environmental sample. # Verification protocol for pooling pre-enriched samples - ◆ Enriched Half-Fraser or enriched Half-Fraser diluted 1/5 - Probability of detection | | Detection
threshold
(cfu/ml) | I 0 ² | I 0 ³ | I 0 ⁴ | |----------------|------------------------------------|------------------|------------------|------------------| | With stress | Single enrichment | 46% | 29% | 16% | | | Pooled enrichment | 34% | 19% | 11% | | Without stress | Single enrichment | 94% | 80% | 52% | | | Pooled enrichment | 83% | 61% | 31% | #### ISO/DIS 6887-1 # Preparation of test samples, initial suspension and decimal dilutions for microbiological examination - General rules #### Annex D: Verification protocol Use a standard suspension of an appropriately stressed strain (see ISO 16140-2) of the test microorganism appropriate to the method being investigated. Inoculate test portions of the matrix at a level of approximately 5 cfu per 25 g (or ml) The stress conditions applied should mimic the type of stress encountered by the target microorganism when present in a naturally contaminated sample of the product or environmental sample. Little reliance should be placed on the results of a single trial and the chosen protocol should be repeated at least 5, and ideally 8 to 10, times using different samples of the same matrix type/target microorganism combination. # Power of the comparison | Detection p | robabiliti
0.45 v | | mpare: | I vs 0.5 | I vs 0.7 | | |---|----------------------|-----|--------|----------|----------|--| | Nb assays | 5 | 10 | 200 | 5 | 9 | | | Power | 11% | 14% | 80% | 80% | 80% | | | Probability to see NO difference: 89% 86% 20% | | | | | | | # Conclusion and perspectives - ♦ 10% loss of sensitivity of the detection method in case of wet pooling - Is this loss acceptable for competent authorities? - Balance advantages (improvement of sampling plans...) /disadvantages - In case of wet pooling, may the specified ratio for subculturing step in Fraser be modified to 0,5 ml? - Results of this study will be transferred to CEN/TC 275/WG 6/TAG 17 Listeria for the revision of EN ISO 11290-1, and may result in the addition of a note # Thank you for your attention!