

EURLLM European Union Reference Laboratory for Listeria monocytogenes

http://eurl-listeria.anses.fr

Laboratory for Food Safety Maisons-Alfort location

Comparison of inoculation techniques of solid food matrices

Damien MICHELON

SEL Unit [Salmonella - E.coli - Listeria]

9th Workshop of the EURL for *Listeria monocytogenes* 25-27 March 2015

French Agency for Food, Environmental and Occupational Health Safety – Food Safety Laboratory Maisons-Alfort location and Boulogne-sur-Mer location 14, rue Pierre et Marie Curie - F94701 Maisons-Alfort Cedex - Telephone: + 33 149 771 350 - Fax: + 33 149 771 380 Boulevard du Bassin Napoléon - F62200 Boulogne-sur-Mer - Téléphone : +33 321 992 500 – Télécopie : + 33 321 991 725 www.anses.fr - @Anses fr

Objectives of the study

Purposes: ٠

- To improve the method currently used by EURL *Lm*: method/matrix
- To simulate a naturally occurred contamination (structure, physico-chemical parameter, microflora...)
- To take into account the subsampling stage in the PT trials
- To provide new inoculation techniques for NRLs which organize PT trials at national level
- To investigate artificial contamination of very low numbers of cfu/samples
- To test new matrices

To identify the different inoculation techniques used to contaminate solid food matrices and to compare them

- Parameters to be taken into account: ۲
- Adaptation to structure of matrices (slice, cube-shaped...)
- Volume, surface, weight of pieces of matrices.
- To allow inoculation of a large volume of matrices.
- Rapid and easy to set up
- Need of a particular know-how?
- Safety for manipulators

EURL Lm

opean Union Reference Laboratory fo

Objectives of the study

To identify the different inoculation techniques used to contaminate solid food matrices and to compare them

- Parameters to be taken into account:
 - ⇒ Adaptation to structure of matrices (slice, cube-shaped...)
 - \Rightarrow Volume, surface, weight of pieces of matrices.
 - \Rightarrow To allow inoculation of a large volume of matrices.
 - \Rightarrow Rapid and easy to set up
 - \Rightarrow Need of a particular know-how?
 - ⇒ Safety for manipulators

Bibliography study

Technique	Food matrices	Structure of matrice	Material	-i
One by one	Salmon, salad, diced chicken	cube-shaped, slice	Pipette	
Blending contamination	Cheese, Fruit portion, diced of ham, chicken	Pieces of product	Professional Blender	
Dry inoculation	Almonds, walnuts and pistachios, butter, Powder	Entire product	(Beads, silicium or CaCo3 powder)	
<u>Dipping</u>	Salade, chicken legs	Entire product,	Cuve, tray	
<u>Spraying</u>	Mortadella,	slice	Aerograph	R
Spreading	Salmon	slice	spreader	
5UBL Lm				

anses

EURL LM European Union Reference Laboratory for Listeria monocytogenes Two methods compared:

- ⇒ One by one (currently used in the lab)
- ⇒ Blending contamination

Matrix : cube-shaped matrices (diced poultry)

- Pilot study: (300g contaminated ⇒ sampling 20x10g)
 - Single analysis ⇒ Single analysis (whole sample analyzed)
 - Duplicate analysis ⇒ subsampling of sample
- Real scale study: (1,5kg contaminated ⇒ sampling 60x20g)
 - Duplicate analysis ⇒ subsampling of sample
 - Technical comparison

Experimental design: single analysis

Single analysis: whole sample

Credibility interval (95%) comparison: Data collection of 3 batches centralized to 0, (Nbootstrap= 1000; Fitted $N(\mu;\sigma)$

- Similar homogeneity
- > Less reproducible with OBO technique.
- Contamination targeted is most difficult to reach with OBO

Experimental design: Duplicate analysis

Inter-samples and intra-samples differences comparison

Comparison of d_{intra} vs d_{inter} and d_{intra} OBO vs d_{intra} BC

Comparison of d_{intra} OBO vs d_{intra} BC

Tech	$\sigma_{d_{intra}}$	$\sigma^2_{d_{intra}}/\sigma^2_{d_{intra}}$	subsampling	
OBO	0,28		Not Adapted	
BC	0,12	6,14	Adapted	

Food matrix: 1,5kg (Diced poultry)

♦ 60 samples (25g) ⇒ 2 x10g (subsampling)
♦ 10 samples: homogeneity study
♦ 6 samples: stability study
♦ 44 samples : participant's network

Range of contamination level :

№ 150 to 10000 cfu/g and 5 cfu
 № 5 cfu/g

Contamination:

Inoculum (L. monocytogenes suspension at 2 log upper to the target)
 Blending (5 x 2 min)

Homogeneity study:

EURL LM

\$ 10 samples randomly selected were analyzed in duplicate

Interlaboratory scale: contamination level targeted 10000 cfu/g

Level of contamination targeted reached at around \pm 0,05 log

n=40 (2 batch of 10)

Enumaration low number (<30 colony per plate) Homogeneity assessed by the T1-T2 test (based on Poisson distribution recomanded by the EN ISO/TS 22117:2010)

		Intra-sample	Inter-sample
Batch	[<i>Lm</i>] _{log cfu/g}	T1 (Intra-sample)	T2 (Inter-sample)
1 (2x10)	2,18 (151)	satisfactory	satisfactory
2 (2x10)	2,12 (132)	satisfactory	satisfactory

Homogeneity intra and inter samples satisfactory

Contamination technique adapted to prepare low contaminated samples

Interlaboratory scale: contamination level targeted 5 cfu/sample

Detection of low number (≈ 5 colony per 25g, 50g sample analyzed in duplicate)

Technical comparison : (Pros/cons)

- ⇒ OBO is adaptated for various type of matrice (slice, dice... etc)
- \Rightarrow OBO preserved the structure of matrice better than BC
- ⇒ BC is less laborious (less step, time consuming, operator and manipulattion of sample)
- ⇒ More Critical point in OBO (Contamination and homogenisation)
- ⇒ BC required a blender but easy to implement
- \Rightarrow BC is more reproducible

Experimental comparison : (Pros/cons)

- ⇒ Samples homogeneity similar for sample analysed in single and in totallity
- \Rightarrow BC most adapated for samples analyzed in duplicate
- ⇒ BC enable to assess the subsampling step in Interlaboratory Proficiency testing trial
- \Rightarrow BC is particularly appropriate to prepare enough samples needed for ILPT
- ⇒ Level contamination range for BC is suitabled to prepare the samples for ILPT, especially for the low detection level
- \Rightarrow Samples homogeneity with BC remains the most satisfactory

anses 🗘

SEL unit *Listeria monocytogenes*

team

Sophie Roussel (Team leader) Léna Barre Benjamin Felix Damien Michelon Jean-François Mariet Emilie Brasseur Karol Romero Seheno Harijaona Heninstoa (trainee) Archjana Chandramohan (trainee)

The EURL coordinator

Bertrand Lombard Adrien Asséré

The NRL network

MODAQR

Laurent Guillier

EURL LM European Union Reference Laboratory for

ria monocytogenes

