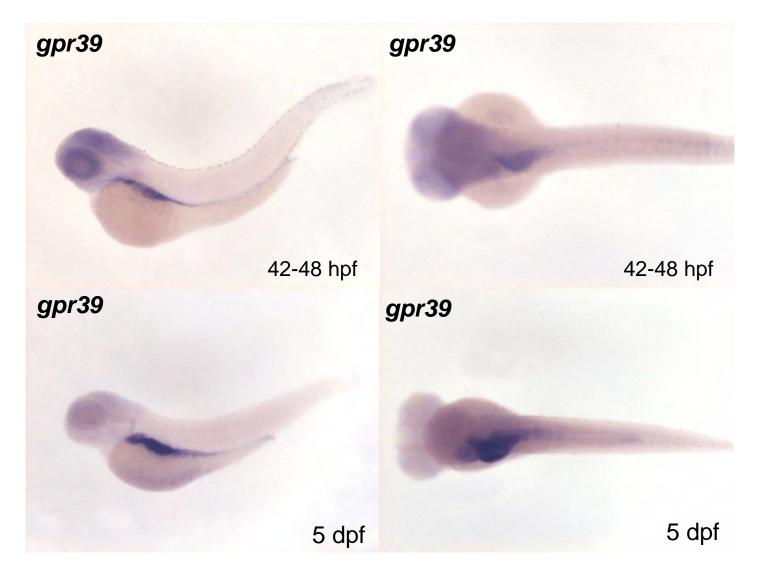
Dottorato di ricerca industriale (2018)

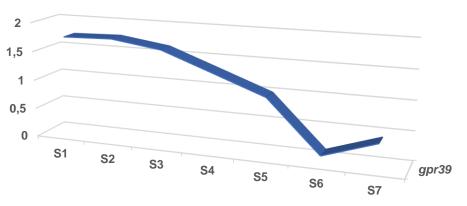
			12121		Anno		1		-	1.1		1-1	II Ar		1.7.1			-	1.	1			Anno		1	1	1	
		Approcci sperimentali utilizzati 1. Consultazione Banche	1 2 3	4 5	5 7	8 9	10	11 1	2 1	2	3 4	5	6 7	8	9	10	11 1	12 1	2	3	4 5	6	1	8 5	10	11	12	Deliverables D1. Analisi completa del trascrittoma del
WP1. Anailaí molecolare e morfo- funzionale dei sistema digerente di zebrafish	A1. Analisi trascrittomica, lungo l'asse rostro-caudale, del sistema digerente di zebrafish	Dati* 2. Genomica e trascrittomica funzionale comparata* 3. Bioinformatica*		5 5	§																							D1. Analisi completa de trascritoma de sistema digerente di zebrafish confronta con dati provenienti da altri pesci a/o vertebrati superiori (mammiferi e uomo compreso) (mesi 1-6)
	A2. identificazione, selezione e verifica per espressiona dei geni principalmente coinvolti nelle funzioni alimentari (digestione, essottomento, secrezione, notilità, immunità) nel sistema digerente di zebrafish adulto	 Isciamento di acidi nudeici (DNA e RNA) e proteine* Real-time PCR semi- quantitativa e quantitativa* <i>In situ</i> hybridizziton Analisi per Western biot* Analisi ed elaborazione dei dati 		§ §	§ §	5 \$	5	·\$.!	1																			D2. Identificazione molecolare e localizzazione del prodotti di espressioni genica di almeno 1/3 dei geni differenzial mente espressi lungo il sistema digerente di zebrafish adulto**** (mesi 4-15)
	A3 identificazione, selezione e verifica per espressione dei geni principalmente coinvolti nelle funzioni alimentari (digestione, assorbimento, secrezione, motilità, immunità) nel sistema digerente di farve e giovanili di zebrafish	 Isolamento di acidi nutcici (DNA e RNA) e proteine* Real-time PCR sami- quantitativa e quantitativa* <i>In situ</i> hybridization* Whole-mount <i>in situ</i> hybridization* Analisi per Western biot* Analisi ed aborazione dei dati 			5	\$ 5	5	ş .																				D3. identificazione molecolare e localizzazione dei prodotti di espression genica durante lo sviluppo larvale e glovanile di zebrafish, con particolare riferimento ai momenti critici dello sviluppo (ad es. giorni 7-12 e giorni 28-3 dopo la fecondazione) (mesi 7-15)
WP2. Messa a punto di diete speciali contenenti molecole con particolare valora alimentare e/o nutraceutico	A1. Identificazione e selezione di molecole con particolare valore alimentare e/o nutraceutico^ in zebrafish	Consultazione Banche Dati Consultazione di collezioni chimiche (chemical libraries)														Ĩ							T				1	D1. Identificazione di molecole con valo alimentare e/o nutraceutico utili per favorire almeno una funzione alimentare (mesi 1-3)
	A2. Verifica del potenziale delle molecole sulle funzioni alimentari	 Screening di molecole mediante incubazione con embrioni e larve di zebrafish" 		5 5	5 5	9 9	in .	5	Um																			D2. Selezione di almeno 3 molecole cor valore alimentare e/o nutraceutico (mesi 4-12)
	A3. Preparazione di diete ad hoc contenenti le moleccie selezionate (da sole o in combinazione)	Preparazione delle diete e dei mangimi contenenti le molecole selezionate*** Analisi ed elaborazione dei dati																										D3. Preparazione di almeno 3 diete e 3 mangimi contenenti le molecole selezionate (mesi 13-15)
WP3. Analisi degli affetti delle diste speciali sulla capacità di crescita, e più in generale sul benessere, di zebrafish	A1. Ricerca e sviluppo di una tecnologia per l'ottimizzazione della misura degli effetti delle diete in zebrafish	Ricerca e svluppo sú sistema Tritone (Tecniptast S.p.A.)** Implementazione di nuove tecnologie su sistema Tritone (Tecniptast S.p.A.)**									w	5	-02	5 \$	s	5	5	\$										D1. Integrazione di almeno un nuovo elemento tecnologico nel sistema di distribuzione del cibo detto Tritone (mes 16-24)
	A2. Messa a punto di protocolii ad hoc per l'analisi degli effetti delle diete su crescita, morfologia e, più in generale, benessere degli zebrafish in allevamento	 Standardizzazione di protocolli sperimentali che tengano conto anche delle normative vigenti** 													s	s	5	\$										D2. Definizione di almeno un protocolio operativo per la somministrazione controllata ed efficace dei mangimi nel sistema di distribuzione del cibo detto Tritone (mesi 21-24)
	A3. Analisi morfometrica, funzionale, e dell'accrescimento in zabrafish trattati con le diete speciali rispetto a zebrafish trattati con diete di controllo	 Analisi biometriche, fisiologiche e comportamentali che tengano conto anche delle normative vigenti Analisi ed elaborazione 																										D3. Definizione in condizioni standardizzate degli effetti benefici delle dete/mangimi speciali rispetto alle dete/mangimi di controllo (mesi 25-36)

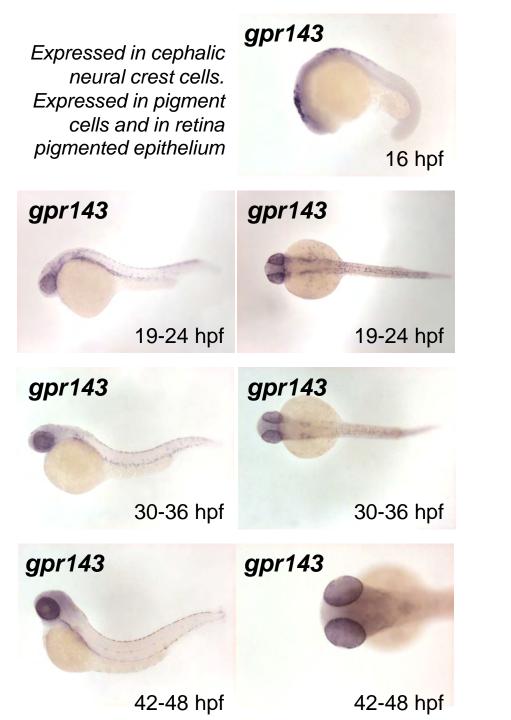

"Parte dell'attività di ricerca di base sarà sviluppata presso il Dipartimento di Biologia dell'Università di Bergen (Bergen, Norvegia). (§) Penodo previsto per le attività nell'Università straniera. 9 mesi

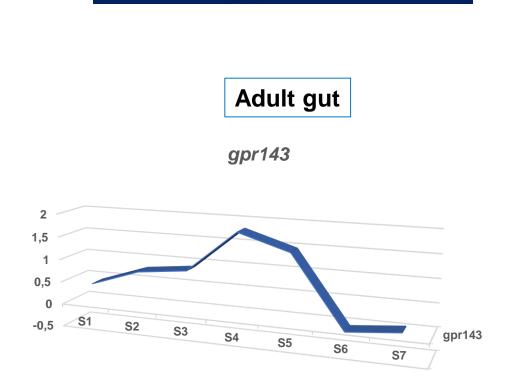
**Gli studi di ricerca e sviluppo e la tecnologia che ne deriverà sarà sviluppata nell'azienda partner di questo progetto, Tecniplast S p.A. (Buguggiate, VA), durante lo stage in azienda del dottorando. (\$) Periodo previsto per le attività in azienda mesi 9
***Diete e mangimi verranno sviluppati e preparati con l'ausilio di SPAROS LDA [impresa spin-off del Centro per le Scienze Marine di Algarve (CCMAR) dell'Università dell'Algarve, Portogallo].

****Si stima che il trascrittoma del sistema digerente dello zebrafish adulto esprima almeno 22000 geni.

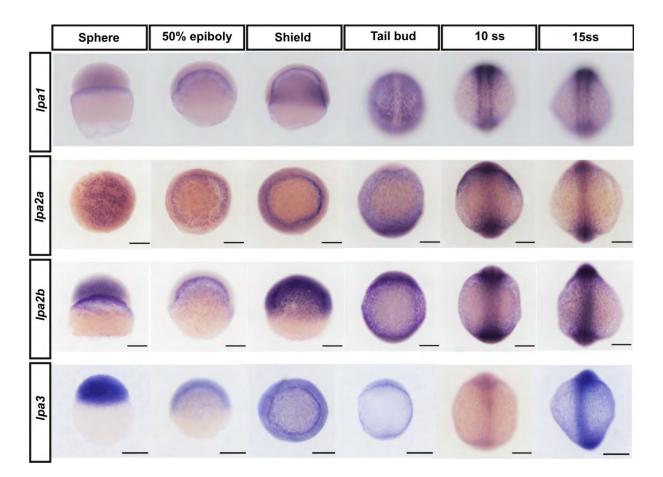
^Le molecole saranno selezionate tra piccoli peptidi, sostanze peptido-mimetiche e/o peptido-simili sulla base delle informazioni di letteratura e sulla base delle esperienze pregresse maturate nei laboratori di ricerca, italiano e norvegese, partecipanti al progetto, particolare attenzione sarà data alle molecole peptidiche di origine dietetica, derivanti dai processi digestivi delle proteine di origine alimentare.

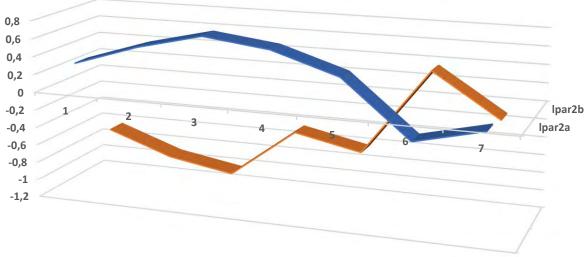



Expressed in intestinal bulb and in brain



GPR39 - This gene is a member of the ghrelin receptor family and encodes a rhodopsin-type Gprotein-coupled receptor (GPCR). The encoded protein is involved in zinc-dependent signaling in epithelial tissue in intestines, prostate and salivary glands. The protein may also be involved in the **pathophysiology of depression**.




gpr39

GPR143 - This gene encodes a protein that binds to heterotrimeric G proteins and is targeted to melanosomes in pigment cells. This protein is thought to be involved in intracellular signal transduction mechanisms. Mutations in this gene cause **ocular albinism type 1**, also referred to as **Nettleship-Falls type ocular albinism**, a severe visual disorder. A related pseudogene has been identified on chromosome Y.

Adult gut

LPA2 - This gene encodes a member of family I of the G protein-coupled receptors, as well as the EDG family of proteins. This protein functions as a lysophosphatidic acid (LPA) receptor and contributes to Ca2+ mobilization, a critical cellular response to LPA in cells, through association with Gi and Gq proteins. An alternative splice variant has been described but its full length sequence has not been determined.

Conclusions

Integrating...

•

- Digestion (digestive enzymes...)
- Terminal digestion (terminal digestive enzymes...)
- Absorption (transporters...)
- Sensing (receptors...)

• Defining phenotypes (biometry, anatomy, physiology, behaviour...)

Conclusions

Commercial fish species

Prof. Carlo Storelli Dr. Alessandro Romano Dr. Amilcare Barca

> Dr. Gianmarco Piccinno Dr. Gianmarco Del Vecchio Dr.ssa Aurora Mazzei

Laboratory of General Physiology Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) University of Salento (formerly University of Lecce)

The collaborative network (other fish models)

Prof. Konrad Dabrowski

School of Natural Resources Ohio State University

University of Warmia and Mazury

Prof. Ivar Rønnestad Dr. Snorre Bakke

Department of Biology University of Bergen

Prof. Teresa Ostaszewska

Department of Ichthyobiology and Fisheries Warsaw University of Life Sciences

Prof. Michele Maffia Dr. Tonia Rizzello

Laboratory of Adaptive Physiology Di.S.Te.B.A. University of Salento

The collaborative network (other fish models)

Prof. Marco Saroglia Prof. Genciana Terova Prof. Giovanni Bernardini

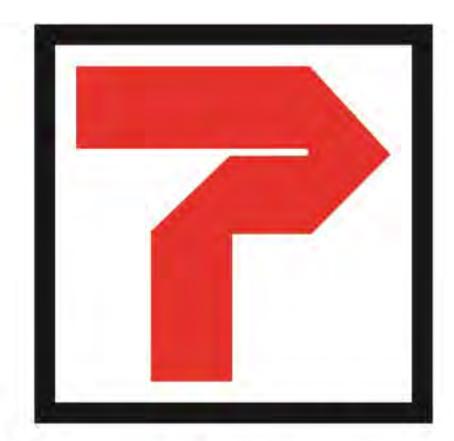
Department of Biotechnology and Molecular Sciences University of Insubria

> Prof. Antonio Peres Prof. Elena Bossi

Department of Biotechnology and Molecular Sciences University of Insubria

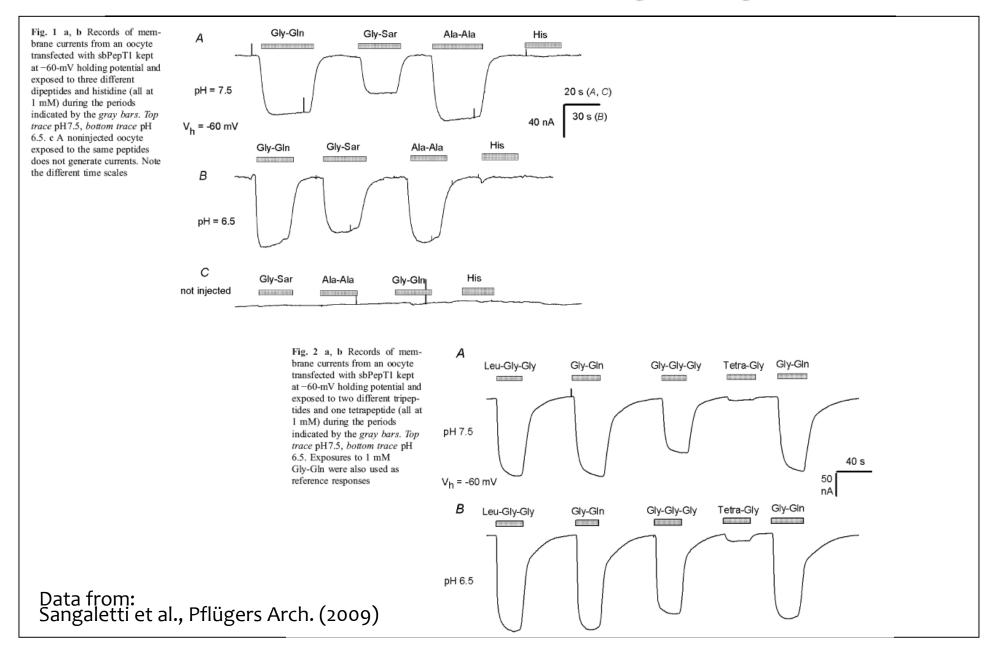
The collaborative network (zebrafish)

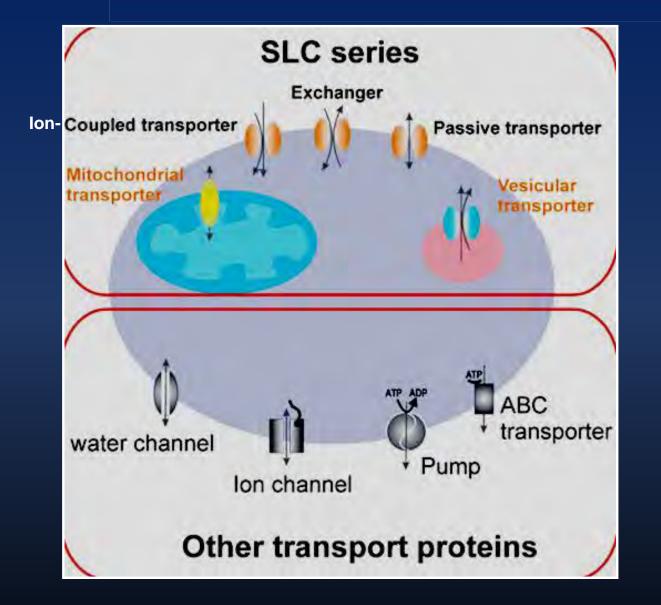
Prof. Hannelore Daniel Prof. Gabor Kottra



Institute of Nutritional Sciences Technical University of Munich

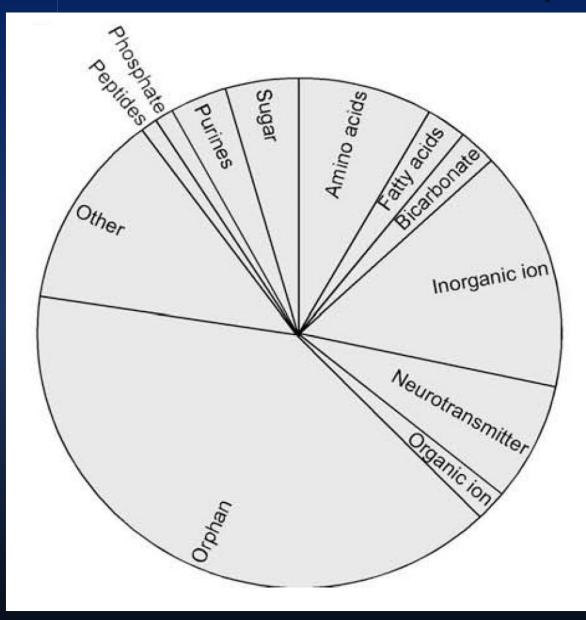
Prof. Francesco Argenton Dr. Natascia Tiso


Department of Biology University of Padua



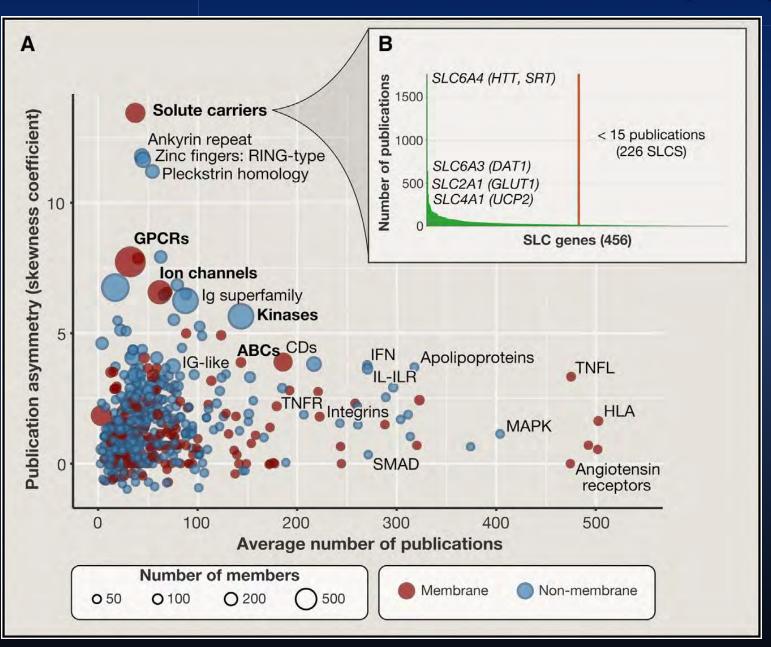
TECNIPLAST

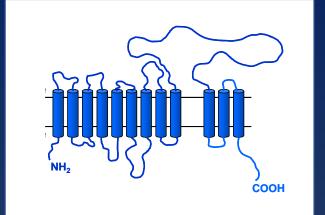
Grazie per l'attenzione


The SLC series includes passive transporters, ioncoupled transporters and exchangers

Passive transport

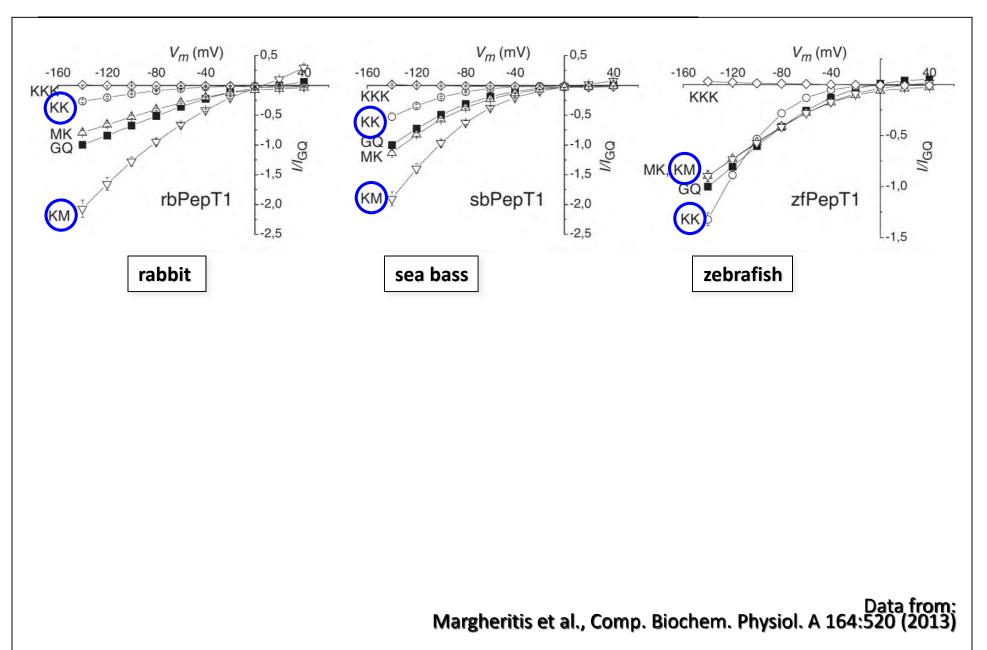
A kind of transport by which ions or molecules move along a concentration gradient, which means movement from an area of higher concentration to an area of lower concentration.

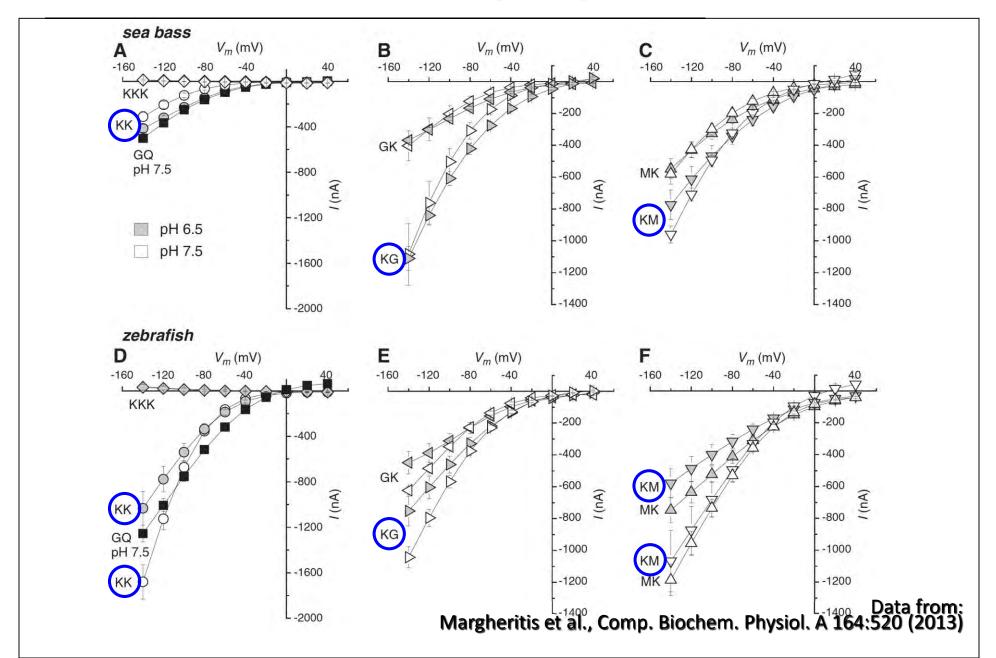

Coupled transport

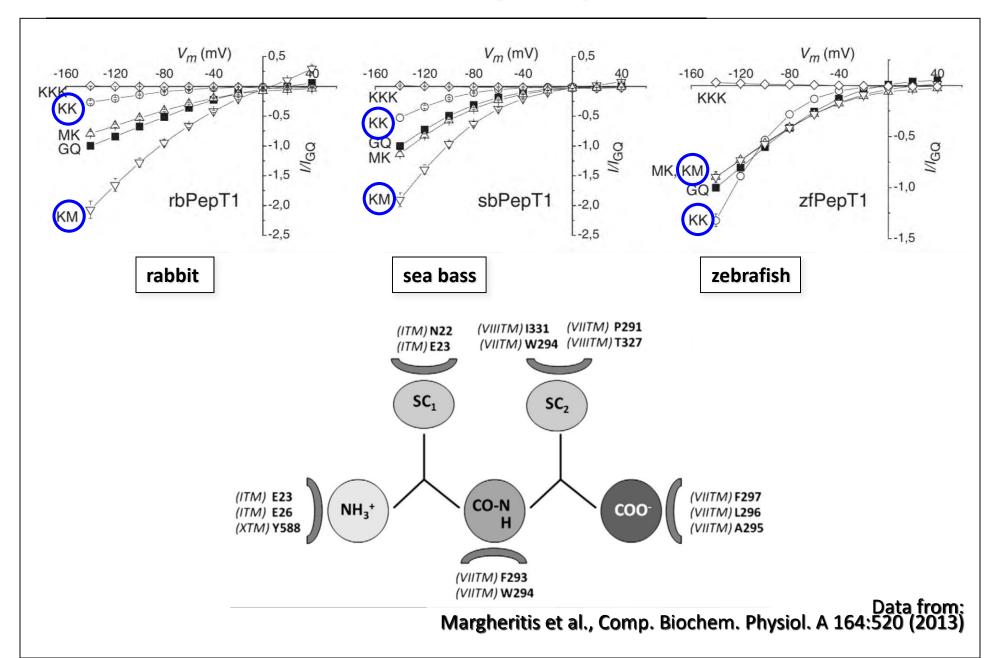

The linked, simultaneous transport of two substances across a cell membrane (or another intracellular membrane). If the two substances are moving in the same direction (both into the cell or both out of the cell) it is called symport. If the two substances are moving in opposite directions (one moves into the cell while the other moves out) it is called antiport.

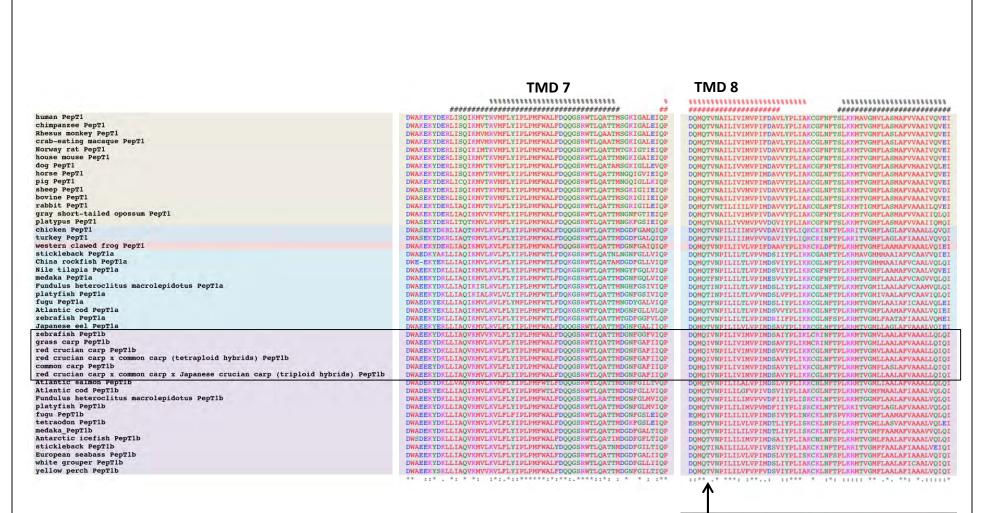
SLCs classification based on the type of substrate they are transporting.

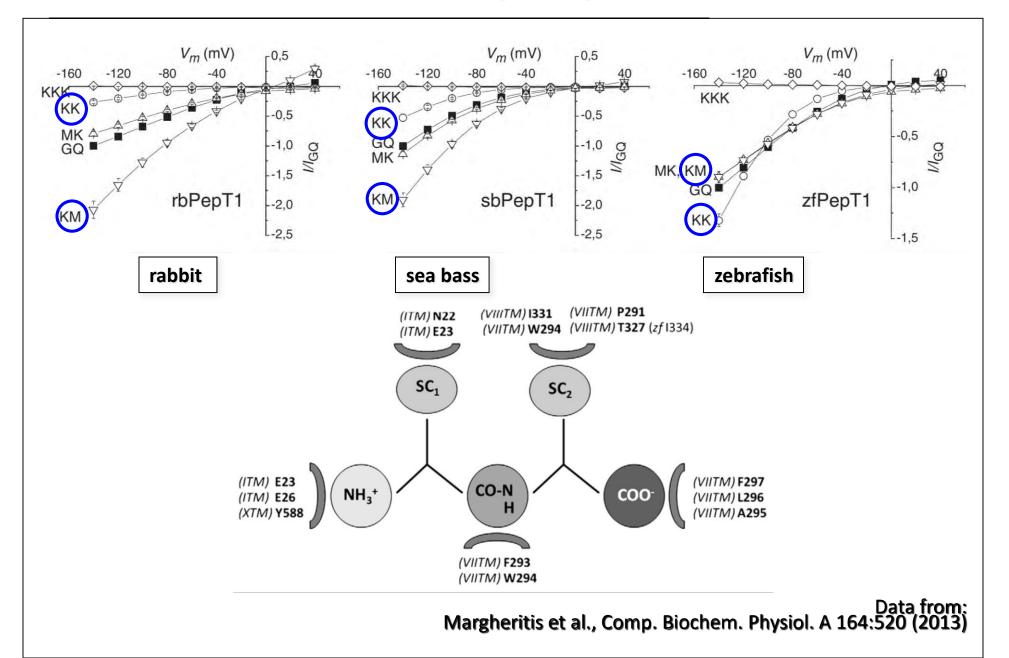
The transporters were classified into ten major groups based on the substrate they are transporting according to the literature. Orphan transporter (substrate unknown) and other (substrate does not fit into any of the ten major categories) are also included as groups in the graph.

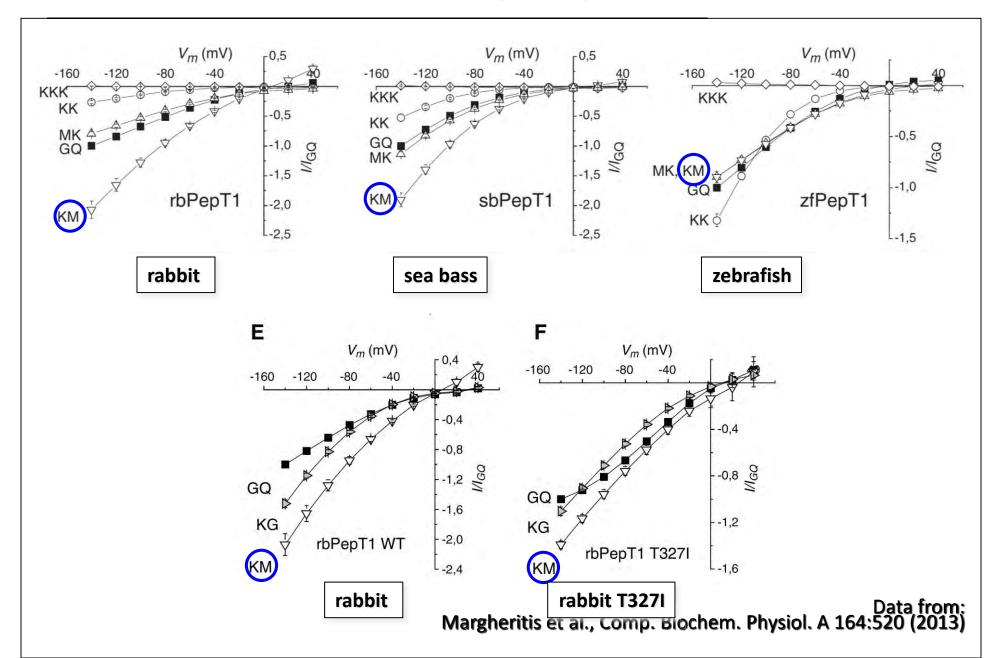


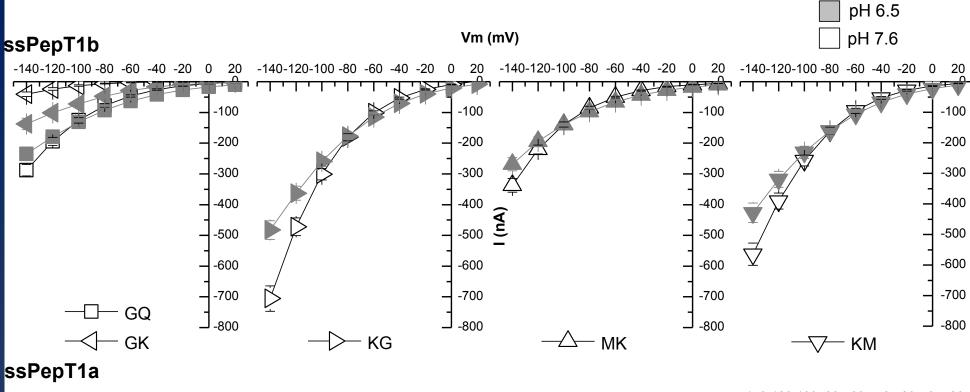



After G-protein-coupled receptors (GPCRs), SLCs are the secondlargest family of membrane proteins in the human genome. Also, SLCs are the most neglected group of genes in the human genome


> Adapted from: Cesar-Razquin et al., Cell 162:478 (2015)


Sea bass PepT1





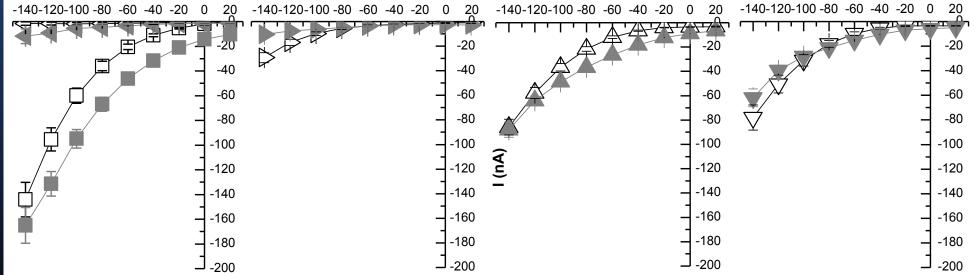
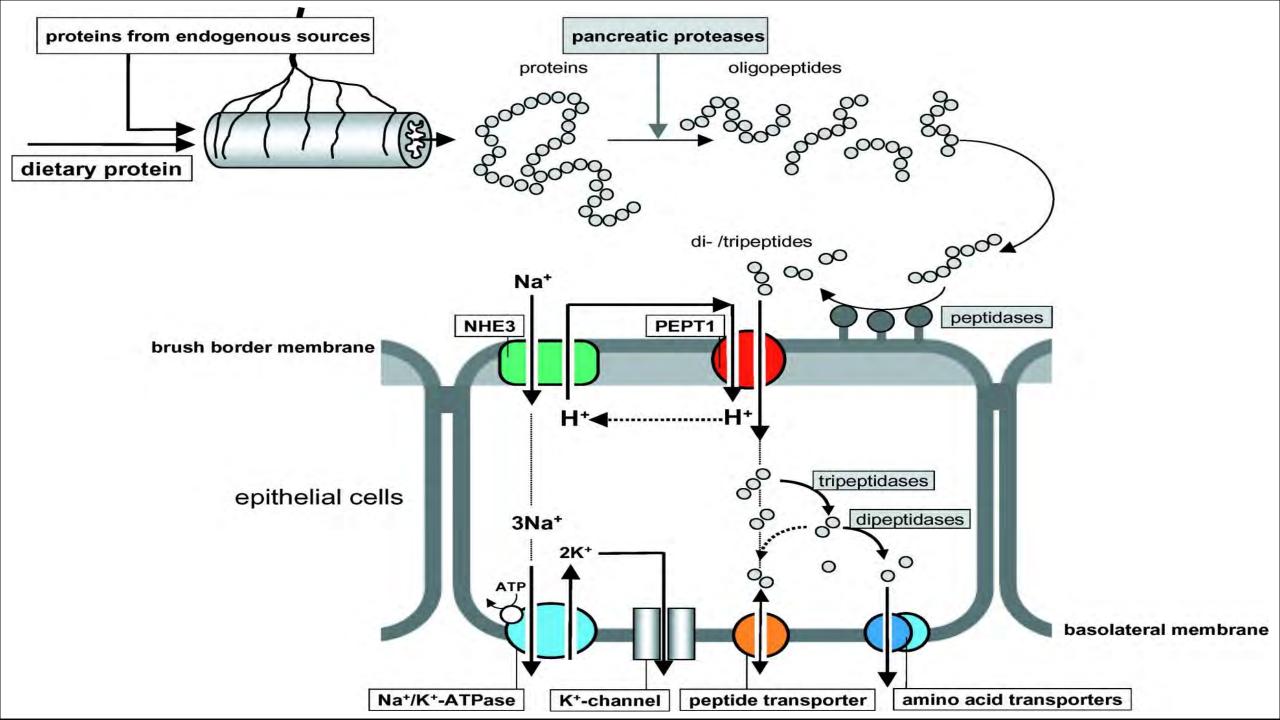



Fig. 5. Dose-response Lys-Gly at pH 7.6 in sodium buffer. A (slc15a1b, pept1b) and **B** (slc15a1a, pept1b), Representative recordings at -60 mV in the presence of the reference di peptide Gly-Gln increasing concentration of Lys-Gly from 0.1 mM to 10 mM for slc15a1b (pept1b) and to 30 mM for scl15a1a (pept1a). C (PepT1b) and **D** (PepT1a), $I_{\overline{m}}V$ relationship of the mean currents obtained by the subtrate of the trace of the that in the presence of the indicated amount of Lys-Gly, at different -potential. The mean octarront -walues were subsequently pletted in relation to substrate concentration (E and F) and fitted with logistic equation to obtain P_{BIAS} and $K_{0.5}$, at workage for PepT1b (Grand H). The lack of saturation of the transport for Pept1a impeded to determine the kinetic parameters for this transporter, only the value at -140 and -120 were estimated and set of PepT1b graphs. We transport efficiency was cany for Pept1b and reported in I. Values are mean ± th 12 pocytes from deferent batch

KG (mM) KG (m

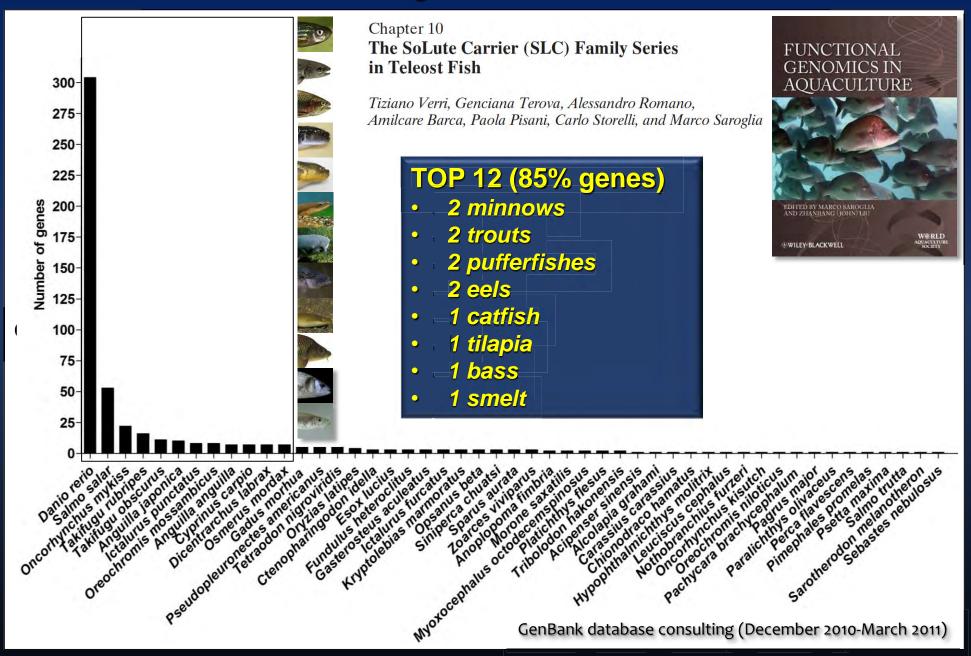
[+] SLC1 High-affinity glutamate and neutral amino acid transporter family

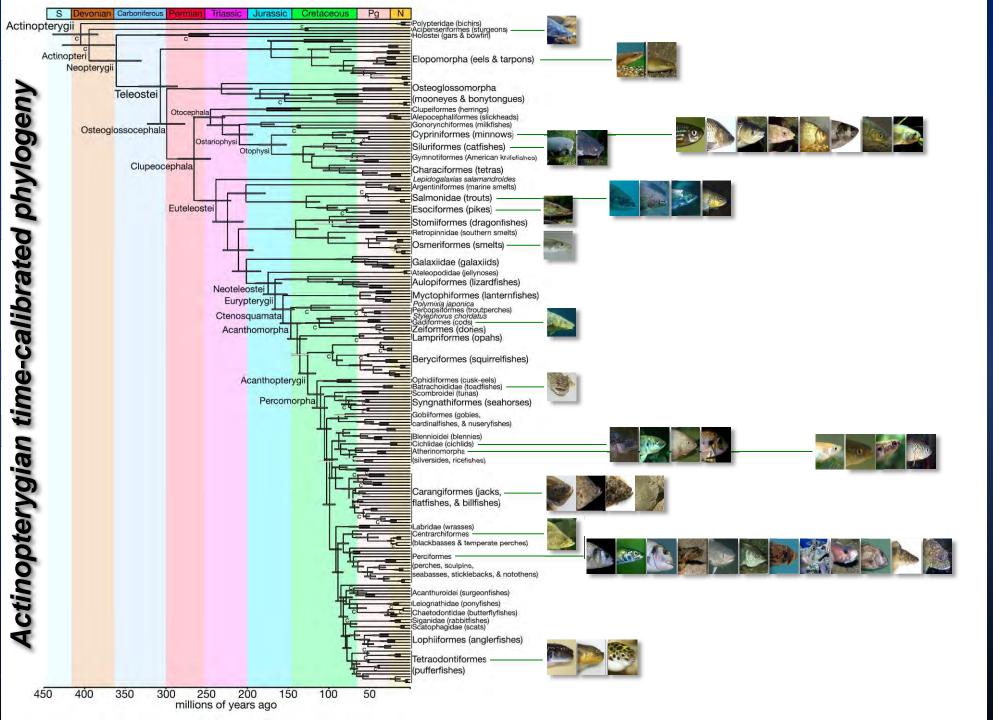
[+] SLC2 Facilitative GLUT transporter family [+] SLC3 Heavy subunits of the heteromeric amin [+] SLC4 Bicarbonate transporter family [+] SLC5 Sodium glucose cotransporter family [+] SLC6 Sodium- and chloride-dependent neurot 65 families [+] SLC7 Cationic amino acid transporter/glycopr [+] SLC8 Na⁺/Ca²⁺ exchanger family [+] SLC9 Na⁺/H⁺ exchanger family [+] SLC10 Sodium bile salt cotransport family [+] SLC11 Proton-coupled metal ion transporter f 458 genes [+] SLC12 Electroneutral cation-coupled CI cotrai [+] SLC13 Human Na*-sulfate/carboxylate cotrans [+] SLC14 Urea transporter family [+] SLC15 Proton oligopeptide cotransporter fam [+] SLC16 Monocarboxylate transporter family [+] SLC17 Vesicular glutamate transporter family [+] SLC18 Vesicular amine transporter family [+] SLC19 Folate/thiamine transporter family [+] SLC20 Type III Na⁺-phosphate cotransporter family [+] SLC21 Organic anion transporter family [+] SLC22 Organic cation/anion/zwitterion transporter family [+] SLC23 Na⁺-dependent ascorbic acid transporter family [+] SLC24 Na⁺/(Ca²⁺-K⁺) exchanger family [+] SLC25 Mitochondrial carrier family [+] SLC26 Multifunctional anion exchanger family [+] SLC27 Fatty acid transporter family [+] SLC28 Na⁺-coupled nucleoside transport family [+] SLC29 Facilitative nucleoside transporter family [+] SLC30 Zinc efflux family [+] SLC31 Copper transporter family [+] SLC32 Vesicular inhibitory amino acid transporter family [+] SLC33 Acetyl-CoA transporter family

[+] SLC34 Type II Na⁺-phosphate cotransporter family [+] SLC35 Nucleoside-sugar transporter family

ed amino acid transporter family hate/phosphate exchanger family System N sodium-coupled neutral amino acid

sporter family on transporter family gnesium transporter family n transporter family ent, system-L-like amino acid transporter family ransporter family ansporter family orter family Toxin Extrusion (MATE) family brter family d transporter family

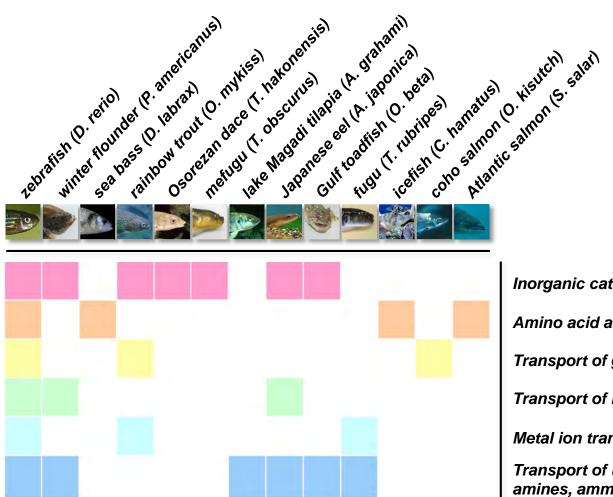

+ SLC50 Sugar efflux transporters


- [+] SLC51 Transporters of steroid-derived molecules
- [+] SLC52 Riboflavin transporter family
- [+] SLC53 Phosphate carriers
- [+] SLC54 Mitochondrial pyruvate carriers
- [+] SLC55 Mitochondrial cation/proton exchangers
- [+] SLC56 Sideroflexins
- [+] SLC57 NiPA-like magnesium transporter family
- [+] SLC58 MagT-like magnesium transporter family
- [+] SLC59 Sodium-dependent lysophosphatidylcholine symporter family
- [+] SLC60 Glucose transporters
- [+] SLC61 Molybdate transporter family
- [+] SLC62 Pyrophosphate transporters
- [+] SLC63 Sphingosine-phosphate transporters
- [+] SLC64 Golgi Ca²⁺/H⁺ exchangers
- [+] SLC65 NPC-type cholesterol transporters

Adapted from:

The Solute Carrier (SLC) family series in teleost fish

The SLC family series in teleost fish



Adapted from: Near et al., PNAS 109:13698 (2012)

The SLC family series in teleost fish

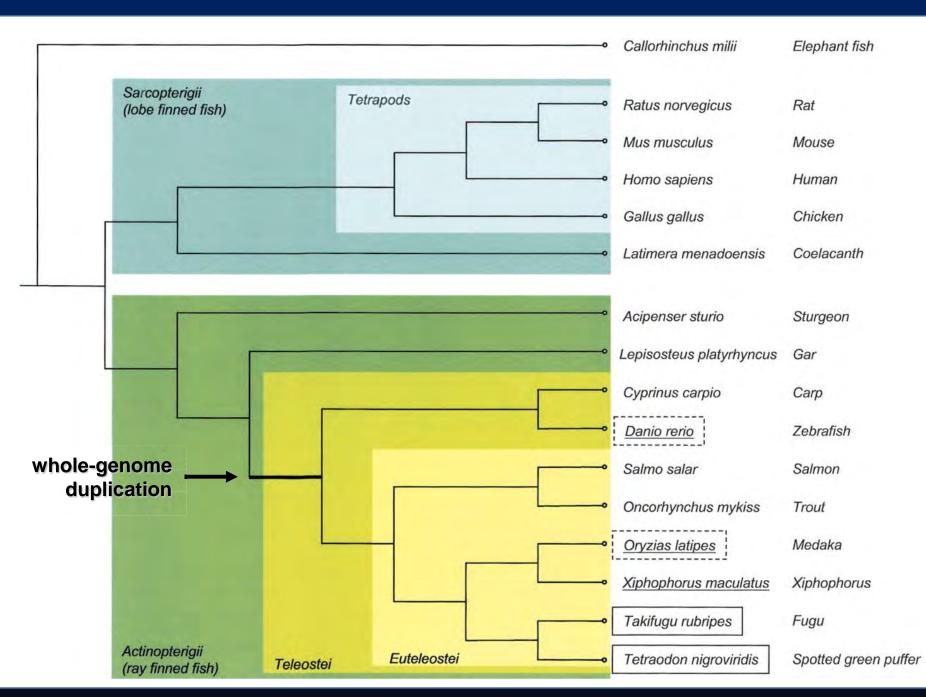
Functional expression of SLC proteins in teleost fish

Inorganic cation/anion transport

Amino acid and oligopeptide transport

Transport of glucose and other sugars

Transport of bile salts and organic anions


Metal ion transport

Transport of urea, neurotransmitters and biogenic amines, ammonium and choline

GenBank database consulting (December 2010-March 2011)

Table 1	. List of the solute carrier (SLC) families in	n zebrafish							Table 1. Continued										
					Zebrafis	sh					-		Zebrafis	sh					
Family	Name	Total Total dupl		Non- duplicated genes	Duplicated genes designated as 'a' and 'b'	Duplicated genes designated as 'tandem duplicate'	Possibly duplicated genes and/or genes not obviously designated	Family	Name	Human Total genes	Total	Non- duplicated genes	Duplicated genes designated as 'a' and 'b'	Duplicated genes designated as 'tandem duplicate'	Possibly duplicated genes and/or genes not obviously designated				
SLC1	High affinity glutamate and neutral	7	9	5	4	0	0	SLC34	Type II Na ⁺ -phosphate cotransporter	3	2	0	1	0	1				
	amino acid transporter family								family										
SLC2	Facilitative GLUT transporter family	14	12	6	2	0	4	SLC35	Nucleoside-sugar transporter family	30	19	16	3	0	0				
SLC3	Heavy subunits of the heteromeric	2	2	1	1	0	0	SLC36	Proton-coupled amino acid	4	1	1	0	0	0				
	amino acid transporters							CI C27	transporter family		-	2		0	0				
SLC4	Bicarbonate transporter family	10	6	3	3	0	0	SLC37	Sugar-phosphate/phosphate	4	3	2	1	0	0				
SLC5	Sodium glucose cotransporter family	12	8	7	0	0	1	SLC38	exchanger family System A & N sodium-coupled neutral	11	8	6	4	0	1				
SLC6	Sodium- and chloride-dependent	20	13	8	4	0	1	SLCSO	amino acid transporter family		0	0		U	1				
	neurotransmitter transporter family	14	10	~	0	0	4	SLC39	Metal ion transporter family	14	10	10	0	0	0				
SLC7	Cationic amino acid transporter/	14	10	6	0	0	4	SLCSS	amily	14	1	1	0	0	0				
	glycoprotein-associated family	4	4		3				prter	3	1	1	0	0	0				
SLC8 SLC9	Na ⁺ –Ca ²⁺ exchanger family Na ⁺ –H ⁺ exchanger family	13	4	5	1					5			U U	U	v				
SLC10	Sodium bile salt cotransport family	7	1	4	0				mily	3	6	5	0	0	1				
SLC10	Proton-coupled metal ion transporter	2	4	4	0					3	3	0	3	0	0				
	family					52		\mathbf{n}	les y	F	4	2	2	0	0				
SLC12	Electroneutral cation-coupled Cl	9	8	5	1					2	4	2	2	0	0				
	cotransporter family	-		2						3	2	2	0	0	0				
SLC13	Human Na ⁺ -sulfate–carboxylate	5	4	3	0				n (MATE)	2	2	2	0	0	0				
	cotransporter family								(WATE)	2	2	2	U	U	U				
	Urea transporter family	8	3	1	0		5			1	1	0	1	0	0				
	Proton oligopeptide cotransporter family	4		2		─ ∠ /	\mathbf{D}		nes ily	4	4	3	0	0	1				
SLC16	Monocarboxylate transporter family	14	10	7	2					1	1	1	0	0	0				
SLC17	Vesicular glutamate transporter family	9	5	3	2				d	2	4		U	0	U				
SLC18	Vesicular amine transporter family	4	3	2	1					2	2	2	0	0	0				
SLC19	Folate/thiamine transporter family	3	3	2	0					2	2	2	U	0	0				
SLC20	Type III Na ⁺ -phosphate cotransporter family	2	2	1	1	0	0	Total	KEV 1/3LC32	398	275	201	51	2	21				
SLC21	Organic anion transporting family	11	11	11	0	0	0	The to	tal number of 'official members' (i.e. the r	nembers fo	or which a	n official sym	bol has been assic	ned) in each fam	ly is shown for				
SLC22	Organic cation/anion/zwitterion transporter family	23	5	4	1	0	0	humar	and zebrafish. The number of zebrafish shown. Data have been obtained by GenB	non-duplic	ated, dup	licated and p	ossibly duplicated	/not obviously de	ignated genes				
SLC23	Na ⁺ -dependent ascorbic acid transporter family	4	2	2	0	0	0	13 8130	shown. Data have been obtailed by denb		ase search	i on the keren	ence 205 minary	Assembly (July 20	157.				
SLC24	Na ⁺ /(Ca ²⁺ –K ⁺) exchanger family	5	4	3	1	0	0												
SLC25	Mitochondrial carrier family	53	35	26	8	0	1					-							
SLC26	Multifunctional anion exchanger family	11	8	7	0	0	1		The SLC			пуз	serie	es in					
SLC27	Fatty acid transport protein family	6	4	2	2	0	0						_						
	Na ⁺ -coupled nucleoside transport family	3	0	0	0	0	0		zebrafis	sh	(D)	ani	io-re	rio)-					
SLC29	Facilitative nucleoside transporter family	4	3	2	0	0	1												
SLC30	Zinc efflux family	10	9	8	1	0	0												
SLC31	Copper transporter family	2	2	2	0	0	0												
	Vesicular inhibitory amino acid transporter family	1	1	1	ō	0	0								Adap				
51 (33	Acetyl-CoA transporter family	1	1	1	0	0	0						omano et	al., J. Phys	101. 592:8				

Adapted from: Physiol. 592:881 (2014)

-

Whole genome duplication event(s)