

- T. equiperdum OVI strain
- T. evansi strain (Kazakistan)

KDNA PCR Targets

- Subunit 6 ATP synthase
- Subunit 7 NAD dehydrogenase
- Subunits 4 NADH dehydrogenase
- Subunits 5 NADH dehydrogenase
- Murf 2- COX1
- Subunit 2 Cytochrome oxidase
- 12S ribosomal RNA

Nuclear DNA PCR Targets

- RoTat 1.2 VSG gene
- Dihydrolipoamide dehydrogenase (LipDH)
- ATP synthase y subunit (yATPase)

Maxi circoli del kDNA

PCR	<i>T. equiperdum</i> ICT (IZSAM)	T. equiperdum OVI
6 ATP synthase	Negative	Positive
7 NAD	Negative	Positive
4 NAD	Negative	Positive
5 NAD	Negative	Positive
MURF2-CO1	Negative	Positive
CO2	Negative	Positive

Target nucleare

Ann T 59

8 106

RoTat 1.2 VSG gene (Claes F. et al 2004)

1) DNA from rabbit scrotum 2) DNA from rabbit scrotum 1:10 3) DNA from rabbit scrotum 1:100 4) T. equiperdum OVI 5) T. evansi (Kazakistan) 6) T. evansi (Kazakistan) 1:10 7) T. evansi (Kazakistan) 1:100 8) T. evansi (Venezuela) 9) T. evansi (Venezuela) 1:10 10) NTC

Caratterizzazione genetica

- T. equiperdum Italy è risultato negativo a tutte le PCR per target presenti sui maxicircoli del kDNA
- T. equiperdum Italy è risultato negativo alla PCR per RoTat1.2 VSG
- I prodotti PCR dei geni nucleari LipDH e γATPase sono stati clonati e sequenziati

Mutazioni nella regione C-terminal descritte in ceppi di *T. evansi* and *T. equiperdum*

Table 1. ATPase subunit γ sequence variations tested in this study

S. Dean et al. 2013

yATPase

Mutation	Source (origin, host, year of isolation)	Source for mutation; isolate		
262P <i>T. b. brucei</i> 164DK (USA, mouse, 1971)		17; 20		
CTT→CCT				
A273P	T. equiperdum BoTat1.1 (Morocco, horse, 1924)	4; 3		
GCG→CCG	T. equiperdum STIB784 (unknown)	4; 4		
	T. equiperdum STIB842 (unknown)	4; 4		
A281del	T. equiperdum ATCC30019 (France, horse, 1903)	This work; 3		
TCTGCTATG→TCT—ATG	T. equiperdum ATCC30023 (France, horse, 1903)	This work; 3		
	T. equiperdum STIB818 (China, horse, 1979)	4; 3		
	T. evansi Antat 3/3 (South America, capybara, 1969)	This work; 51		
	T. evansi C13 (Kenya, camel, 1982)	This work; 51		
	T. evansi CPOgz1 (China, water buffalo, 2005)	This work; 4		
	T. evansi E110 (Brazil, capybara, 1985)	This work; 44		
	T. evansi E9/CO (Columbia, horse, 1973)	This work; 51		
	T. evansi SS143M (Philippines, water buffalo, 2006)	This work; 4		
	T. evansi SS73M (Philippines, water buffalo, 2006)	This work; 4		
	T. evansi STIB805 (China, water buffalo, 1985)	4; 4		
	T. evansi STIB807 (China, water buffalo, 1979)	This work; 4		
	T. evansi STIB810 (China, water buffalo, 1985)	4; 4		
	T. evansi Stock Kazakh (Kazakhstan, camel, 1995)	This work; 4		
M282L ATG→TTG	T. evansi KETRI2479 (Kenya, camel, 1981)	4; 51		

In all strains investigated, the L262P and A273P mutations are homozygous, whereas the A281del and M282L mutations are heterozygous.

Analisi della sequenza di vATPase

Image: mutazioni descritte in
T. evansi e T. equiperdumChe compenserebbero la
perdita totale o parzialedel kDNA non sonopresenti nel ceppoitaliano

AA	T. eq	T. eq	T. eq	T. ev	T. ev
	OVI	BoTat	Italy	STIB	KETRI
		1.1	(IZSAM)	810	2479
262	L/L	L/L	L/L	L/L	L/L
273	A/A	A/P	A/A	A/A	A/A
281	A/A	A/A	A/A	A/-	A/A
282	M/M	M/M	M/M		M/L

Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes

Samuel Dean^{1,2}, Matthew K. Gould¹, Caroline E. Dewar, and Achim C. Schnaufer³

Institute for Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom

Ion Personal Genome Machine® (PGM[™]) System (Ion Torrent[™])

Ion PGM[™] 400 Sequencing Kit

lon 316 [™] v2 Chip

PGM Run summary

Read Summary: Unaligned

 Contaminazione da DNA dell'ospite (ratto per T. eq. OVI, coniglio per T. eq. Italy)

Basso coverage

Risultati

Assemblaggio effettuato usando come genoma di referenza *T. brucei brucei* 927

T. equiperdum OVI

- Assembled nucleotides:
- N. contigs:
- Average contig length:
- Maximum contig length:
- N50:

2508 bp 51702 bp 6441

19 Mbp

7603

2676

358

336 bp

2018 bp

• T. equiperdum Italy (IZSAM)

- Assembled nucleotides: 0.9 Mbp
- N. contigs:
- Average contig length:
- Maximum contig length:
- N50:

kDNA: maxi-mini circoli

T. equiperdum OVI

- Sequenza quasi completa (> 95%) dei maxi circoli
- Presenza dei mini circoli

T. equiperdum Italy (IZSAM)

- Nessuna evidenza di maxi circoli
- Nessuna evidenza di mini circoli

PLOS | NEGLECTED TROPICAL DISEASES

Genome and Phylogenetic Analyses of *Trypanosoma evansi* Reveal Extensive Similarity to *T. brucei* and Multiple Independent Origins for Dyskinetoplasty

J. Carnes et al. 2015

Jason Carnes¹, Atashi Anupama¹, Oliver Balmer², Andrew Jackson³, Michael Lewis⁴, Rob Brown¹, Igor Cestari¹, Marc Desquesnes^{5,6}, Claire Gendrin¹, Christiane Hertz-Fowler⁷, Hideo Imamura⁸, Alasdair Ivens⁹, Luděk Kořený^{10,11¤}, De-Hua Lai^{10,11,12}, Annette MacLeod¹³, Suzanne M. McDermott¹, Chris Merritt¹, Severine Monnerat¹, Wonjong Moon¹, Peter Myler¹, Isabelle Phan¹, Gowthaman Ramasamy¹, Dhileep Sivam¹, Zhao-Rong Lun^{12*}, Julius Lukeš^{10,11,14*}, Ken Stuart^{1,15*}, Achim Schnaufer^{9,16*}

Table 4. Proposed grouping of T. evansi/T. equiperdum isolates.

Group	1	2	3	4
Examples (code)	T. ev. STIB805 (27) T. ev. Kazakh (33) T. ev. AnTat3/3 (36) T. eq. STIB818 (24) T. eq. ATCC30023 (25)	T. eq. STIB842 (22) T. eq. BoTat1.1 (21)	T. eq. STIB841 ¹ (23) = T. Eq OVI	T. ev. KETRI2479 (42)
ATPase γ C-term.	A281del	A273P	WT	M282L
dominant minicircle class	A ²	C ³	n/a	B ⁴
LipDH genotype	W/Z	V/Z	V/V	atypical
COX1 haplotype	23	22	14	n/a ^s
microsatellite PCA	Tev	Tbb	Tbb Kiboko	Tbb
RoTat1.2	+6	2	_7	_8

Analisi filogenetica

Bayesian phylogeny of Trypanozoon isolates based on the LipDH gene (Tb927.11.16730)

■Tbb ■Tbg1 ■Tbr ■Tev ■Teq ■ICT

<i>T. eq.</i> 2011			
ATPase γ C-term	• WT		
Dominant minicircle class	• n/a		
LipDH genotype	• atypical		
COX1 haplotype	• n/a : ICT 2011 lacks COX1		
Microsatellite PCA	• Tbb		
• RoTat 1,2	• -		

IZSAM G.CAPORALE

Analisi di microsatelliti

Pannello di 17 loci

R. Echodu et al 2015

Locus	Forward Primer	Reverse Primer	Motif	Size range (bp)	Chrom. Loc.
Tryp51	[FAM]-TGACCCGTGAGAAGTGAAC	GCGCATCTACAGGCATAGAC	(ATT)	187-238	9
Tryp52	[ALEXA 532]-GCATCATTGACGTCGACCC	TAACAACCACTGGGACCGC	(GT)	201-231	11
Tryp53	[ALEXA 546]-GTACAGCCACGTGCAAACC	TGTACACAATCGGGTGGATG	(AC)	200-254	7
Tryp54	[ROX]-AGTCGGCGTGATGGTACTC	TTCAGCCCACAAACAACCG	(AAAT)	144-176	10
Tryp55	[FAM]-AATTCAACCCCAACAGCCC	CTCGTTCAATGACTTGCCCC	(GT)	208-246	5
Tryp59	[ALEXA 532]-GAGGCAATCGCAGTGTGTG	CGCACGTTTCACCATCCTC	(GT)	209-225	9
Tryp61	[ALEXA546]-ACTCGCGACAGACCATGAG	ACAGGAGAGTGTTGTGAGTG	(ATT)	179-215	11
Tryp62	[ROX]-AAGGCGACCAACTTCAACC	GTTGTCATCGGCTTGCTCC	(AC)	153-177	11
Tryp65	[ALEXA 546]-GGAGGTAAACTTGATTCGGGTG	ACGACAACAGCGACAAAGC	(ATT)	207-234	9
Tryp66	[ROX]-TCCTCGTACCTTTTCTCTCAC	ACGAAATTTAGGTGTGAAAGCTG	(ATT)	384-396	5
Tryp67	[FAM]-GTTGCTGAGGTGCAACTGG	GTCGTCAGGCACCAAAACG	(GTT)	151-178	7
TB1/8	[FAM]-AGGTTTAGTGCATGTCGGA	CCTGTTGTACGGAGGTCA	(CA)	97-117	1
TB5/2	[HEX]-CAACCGAAAGTAAGGGGAAC	TCTCGCCTTCTTTGCCC	(AT)	83-107	5
TB6/7	[HEX]-AAGCTGACAGGTGGTTGA	GAACATGCGTGCGTGTG	(AT)	104-136	6
TB9/6	[HEX]-TGATTCATTGGTTAAGACAGG	AATGATAACTGCGGATTACAC	(AC)	124-158	9
TB10/5	[FAM]-AAAGGCGATATGTTATTATTGA	ATTGGGTATACTGTCCCTCA	(TA)	79-115	10
TB11/13	[FAM]-CAAGAACTCTGCATTGAGC	ATCTGTTGGCGATGGTGA	(AT)	125-161	11

Ceppi analizzati

*T.ev./T.eq.*group 1 Tev STIB805 CD Tev STIB810 CD Tev Colombian Tev Kazakstan Tev Philippine Tev RoTat1.2 Tev Vietnam Tev Antat3/3 Tev Can86/Brazil Tev C13 Teq ATCC30019 Teq ATCC30023 Teq American Teq AnTat4.1 Teq Canadian Teg Hamburg Teq STIB818 Teq SVP

T. equiperdum Italy

*T.ev./T.eq.*group 2 Teq_BoTat1.1_1 Teq_BoTat1.1_2

*T.ev./T.eq.*group 3 Teq_OVI

*T.ev./T.eq.*group 4 Tev_KETRI2479 *T. b. brucei* controls (Yale) H285 H538 H569 H591 H851 Try006 Try007 Try020

GBE Genome-Wide SNP Analysis Reveals Distinct Origins of Trypanosoma evansi and Trypanosoma equiperdum

Genome Biol. Evol. 9(8):1990–1997.

2017

IZ

TΙ

Bart Cuypers^{1,2}, Frederik Van den Broeck¹, Nick Van Reet¹, Conor J. Meehan¹, Julien Cauchard³, Jonathan M. Wilkes⁴, Filip Claes⁵, Bruno Goddeeris⁶, Hadush Birhanu⁷, Jean-Claude Dujardin^{1,8}, Kris Laukens², Philippe Büscher¹, and Stijn Deborggraeve^{1,*}

- Il ceppo responsabile del focolaio di morbo coitale in Italia nel 2011 non è geneticamente correlato con nessun ceppo di *T. equiperdum* riportato in letteratura.
 - Risulta strettamente correlato con un ceppo di *T. evansi* di tipo B (KETRI 2479) isolato nel 1980 in Kenya (Ngurunit area) e con uno di *T. b. bruceii* isolato nel 1977 in Uganda (Busoga area).
 - Gli studi filogenetici evidenziano come l'evoluzione di ceppi appartenenti al sottogenere *Trypanozoon* con capacità di trasmissione attraverso insetti ematofagi o il coito sia avvenuta almeno in quattro diverse occasioni

Considerazioni

PLOS | NEGLECTED TROPICAL DISEASES

RESEARCH ARTICLE

Multiple evolutionary origins of *Trypanosoma* evansi in Kenya

Christine M. Kamidi^{1,2,3 e.}*, Norah P. Saarman^{4 e.}*, Kirstin Dion⁴, Paul O. Mireji^{1,3,5}, Collins Ouma², Grace Murilla¹, Serap Aksoy³, Achim Schnaufer⁵, Adalgisa Caccone^{3,4}

- Multiple evolutionary origins of *T. b. rhodesiense*from different strains of *T. brucei brucei*. *T. b. brucei* strains from different genetic backgrounds
 apparently can become either parasites of a lethal
- human disease or become able to be transmitted by a variety of hematophagous insects.
- Few reported cases of *T. evansi* infecting humans.
- The acquisition of the SRA gene requires sexual recombination in the tsetse fly.

- •Maurilia Marcacci
- Valentina Curini
- Marco Di Domenico
- Andrea Di Provvido
- •Vincenzo D'Innocenzo
- ...e tutto il gruppo di lavoro MCM dell'IZSAM

Ringraziamenti

- Achim Shnaufer
- Julie Wallis

- Adalgisa Caccone
- Norah Saarman
- Christine Muhonja
- Kirstin Dion

• Michel Lewis