

Listeria monocytogenes Laboratorio Nazionale di Riferimento Predicting the growth kinetics of Listeria monocytogenes and Yersinia enterocolitica in Italian-style fresh sausage: preliminary results

Luigi lannetti

Romolo Salini

Workshop dei LNR per *Listeria monocytogenes* e *Campylobacter* 25 e 26 novembre 2014 - Teramo

LEGAL FRAMEWORK

PREDICTIVE MODELS IN THE REGULATION 2073/2005

The use of predictive modelling techniques is clearly recommended by reg. 2073/2005 (annex II) to demonstrate the compliance with microbiological criterion 1.3 for *Listeria monocytogenes*

Categoria alimentare	Micro- organismo	Piano di campiona mento		Limiti		Metodo di analisi di	Fase a cui si applica il
		n	С	m	М	merimento	criterio
Alimenti pronti che costituiscono terreno favorevole	Listeria m.	5	0	100	UFC/g	EN/ISO 11290-2 (numerazione)	Durante la vita commerciale del prodotto
alla crescita di Listeria monocytogenes							

LEGAL FRAMEWORK

PREDICTIVE MODELS IN THE REGULATION 2073/2005

- FBO can demonstrate that the level is less than 100 CFU/g through:
 - Scientific literature
 - Shelf life studies (durability studies and challenge tests)
 - "predictive mathematical modelling established for the food in question, using critical growth or survival factors for the micro-organisms of concern in the product"

PREDICTIVE MICROBIOLOGY

- Interdisciplinary research area of food microbiology
- Combines mathematics, statistics, microbiology, engineering and chemistry
- Develop and implement mathematical models in order to predict growth responses of microorganisms to conditons in question

PREDICTIVE MICROBIOLOGY

Microbial responses to environmental conditions

Change in log cell conc. = = f(temp, pH, aw)

PREDICTIVE MICROBIOLOGY

Primary models:
 Describe changes of the microbial number (growth, survival, death) as a function of time

• Secondary models:

describe parameters of the primary models as a function of environmental conditions (pH, temp, a_w)

Tertiary models:
 Computational implementation (software tools)
 primary and secondary models.

PREDICTIVE MICROBIOLOGY MODEL DEVELOPMENT:

- Experimental design data collection
- Estimation of the parameters of the *primary model*
- Effect of the environmental variables of the secondary model
- Model validation

Integration in a software tool (tertiary model)

Preliminary results on predictive model developed in collaboration with dr. József Baranyi of IFR (Institute of Food Research), Norwich, UK

IZSAM G.CAPORALE

- Fresh Italian-style sausage: meat product/preparation from swine meat, traditional of Central Italy, frequently consumed raw
- Usually produced in small processing plant annexed to retail, for direct sale to the consumer
- The consumption of the raw product is usually after a variable storing period. Some changes happen in the product during this period
- Could we predict effects on pathogens' kinetics?

Risk of *Listeria monocytogenes* (Lm) and *Yersinia enterocolitica* (Ye) food poisoning, mostly when consumed raw or rare cooked

 Aim: designing and validate a secondary predictive model to predict Lm and Ye growth as a function of environmental conditions before consumption

- Performed at the Laboratorio Trasformazioni Sperimentali of IZSAM, according to EURL Lm technical document (version 2008) with some modifications
- Traditional recipe (swine meat based)

Laboratorio Nazionale di Riferimento Challenge tests

Contamination using mixture of 3 strains for each microorganism, one from international collection (ATCC for Lm, NCTC for Ye) and 2 wild strains from sausages

- Temperatures: 8°, 12°, 18°e 20°C
- Variables:
- Lm and Ye concentration as Log CFU/g (LogC)
- pH
- Water activity (a_w)
- Competitive microflora (lactic acid bacteria, micrococo, enterococci)

After initial growth and stationary phase, progressive decreasing of LogC was observed at all temperatures

 a_w (reduces as a function of time) seems to be the environmental variable with the biggest impact on Lm and Ye concentrations

- © PREDICTIVE MODEL UNDER DYNAMIC GROWTH-DEATH CONDITION in order to predict kinetics along the whole 20dd period
- It is an innovative model, as only growth or death models are commonly used for modelling in dynamic environment

Environment quantification:

- temperature (*temp*)
- pH (*pH*)
- water activity (a_w)

where temperature and pH:

- static, growth supporting
- Aw:
 - dynamic, decreasing from:
 *Growth region (aw > aw_{Hi})
 *Growth-No growth region (aw_{Lo}<aw<aw_{Hi})
 *Death region (aw<aw_{Lo})

PREDICTING KINETICS OF LISTERIA TERAMO MONOCYTOGENES AND YERSINIA IN SAUSAGE

Growth-No growth region

It is the most "difficult" region in the model

- When a_w is in the "Growth-No growth region" (unpredictable chaotic region), the model takes Logc (logCFU/g) would as a constant

Width of this region?

PREDICTING KINETICS OF LISTERIA TERAMO MONOCYTOGENES AND YERSINIA IN SAUSAGE **Growth-No growth region** ratorio Nazionale di Riferimente

Width of this region for *Listeria monocytogenes*, according to data in literature, should be 0.03 (0.89-0.92), as confirmed by data collected from Combase e reported in this figure:

orio Nazionale di Riferiment

PREDICTING KINETICS OF LISTERIA

Growth-No growth region

Yersinia: only a few data are in literature

- specific rate/a_w behaviour similar to *Listeria* monocytogenes was assumed
- same width (0.03) of growth-no growth boundary region, but "shifted" to right considering that its lower growth boundary is a_w 0.92-0.94 (FDA 2011)

Competitive microflora inhibitory effect

- Lactic acid bacteria (lab) have the strongest impact on Lm and Ye growth
- The estimation of lab concentration over a certain level (labMax) was introduced as inhibitory factor of pathogens' growth rate (rateG)
- On the bases of observed values, labMax was taken as 8.2 log CFU/g

CONCLUSION

Preliminary results, need confirmation and validation

- Under the temporal change of the temperature variable (time
 temp) the model can predict growth/death kinetics at different storing conditions
- Innovative model under dynamic growth-death conditions
- Possible application of this type of model to other similar products with environmental changes during seasoning/storing