

Need for reliable disease burden estimates to support food safety decision making: the example of human campylobacteriosis in the EU

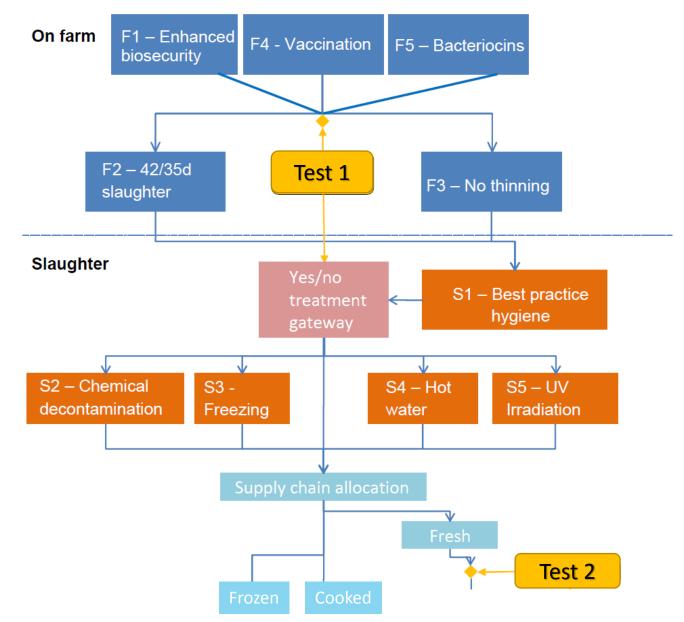
János G. Pitter¹, Zoltán Vokó^{1,2}, Ádám Halmos³, <u>Ákos Jóźwiak</u>⁴

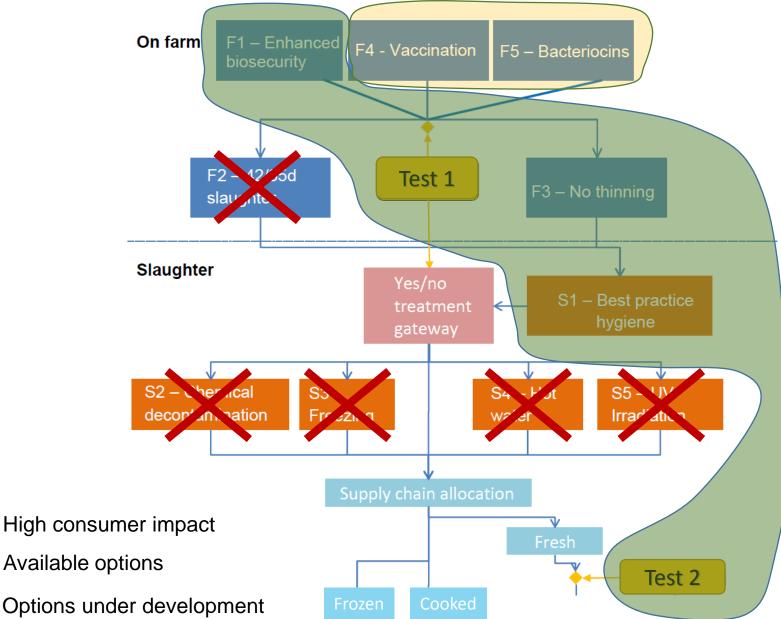
¹ Syreon Research Institute Ltd., Hungary

² Department of Health Policy & Health Economics, Institute of Economics, Faculty of Social Sciences, Eötvös Loránd University, Hungary

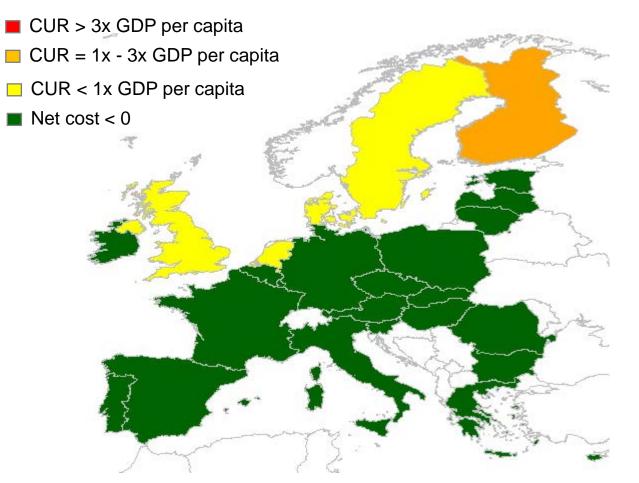
³ Graduate student at the Faculty of Social Sciences, Eötvös Loránd University, Hungary

⁴ National Food Chain Safety Office (NÉBIH), Hungary


A published cost-utility analysis on potential Campylobacter control measures on the indoor broiler meat food chain


A report submitted by ICF GHK in association with ADAS Date: 14 August 2012 Job Number: 30258939 Pdf report: http://ec.europa.eu/food/food/biosafety/salmonella /docs/campylobacter_cost_benefit_analysis_en.p df

MS Excel model: <u>http://ec.europa.eu/food/food/biosafety/salmonella</u>/docs/campylobacter_excel_model_en.xls


Farm-level and slaughterhouse-level interventions

Farm-level and slaughterhouse-level interventions

Model-derived cost-effectiveness of the selected strategy

Enhanced biosecurity (F1) + No thinning (F3) + Best practice hygiene (S1) + Testing (T1, T2)

20% decrease in annual human campylobacteriosis cases in the EU-27

EU-27: intervention costs – cost of illness avoided **~ -353** million EUR / year

Key underlying assumptions

Avoided DALYs = avoided human cases * 0.0389 DALY

Avoided cost of illness = avoided DALYs * 6857 EUR

EFSA Scientific Opinion, 2011

Objectives of the presentation

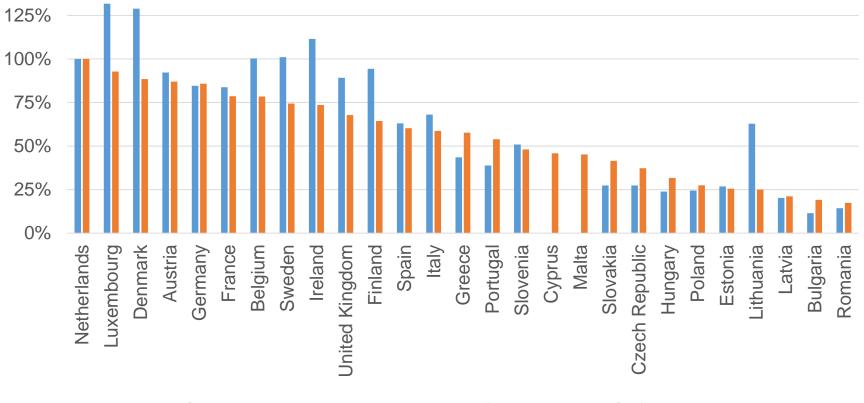
- Generate country-specific cost of illness estimates in the EU-27
- Express the EU health burden of campylobacteriosis in QALYs
- Re-run the published Campylobacter model with the adjusted input parameters
 - re-evaluate the selected strategy
 - (strategic pricing for interventions in development)

Objectives of the presentation

- Generate country-specific cost of illness estimates in the EU-27
- Express the EU health burden of campylobacteriosis in QALYs
- Re-run the published Campylobacter model with the adjusted input parameters
 - re-evaluate the selected strategy
 - (strategic pricing for interventions in development)

Cost of illness estimates are based on data from The Netherlands

EU-27 annual cost of illness = 2400 million EUR, for 9 million cases (EFSA, 2011) cost of illness per case = **267 EUR**

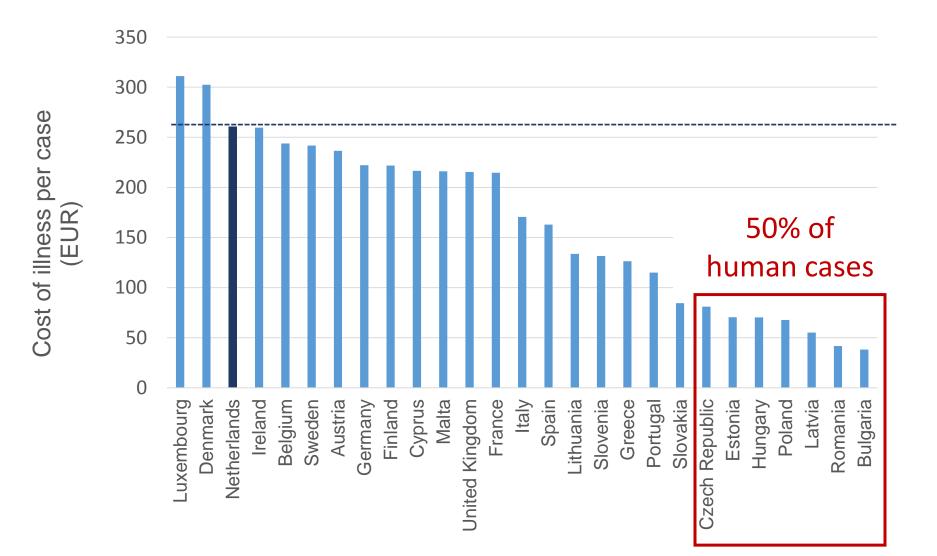

In The Netherlands, cost of illness per case = **261 EUR** (Mangen, 2005)

Cost types in Mangen, 2005	Examples	Cost per case
Direct healthcare costs	Drug costs, visits, investigations, hospitalisation	82 EUR
Other direct costs	Travel costs to/from GP or hospital	1 EUR
Other indirect costs	Productivity loss	177 EUR

Limits of transferability from The Netherlands to the EU-27

- differences in direct healthcare costs;
- differences in price for productivity

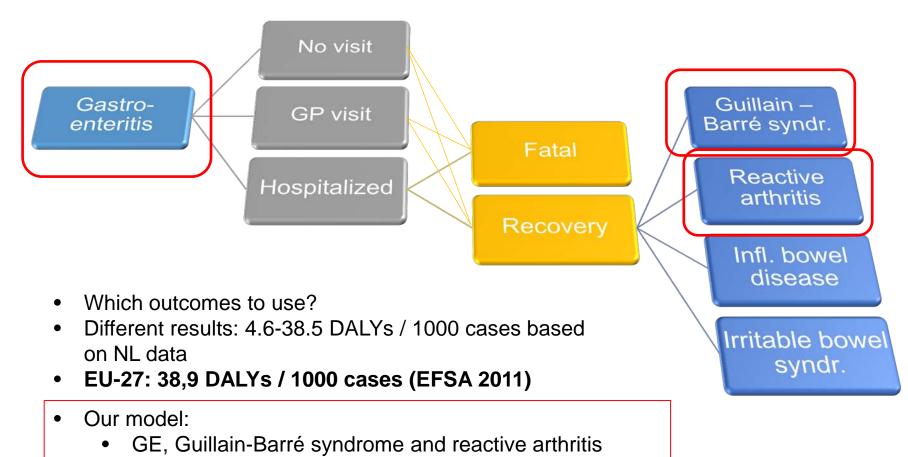
Cost of illness: country-specific correction factors


Gross average wages, % of NL (source: UNECE)

Health expenditure per capita, % of NL (source: OECD)

Loss of productivity / case*: $177 EUR \rightarrow \text{ from } 20 \text{ (Bulgaria) to } 233 EUR \text{ (Luxembourg)}$ Direct medical costs / case*: $82 EUR \rightarrow \text{ from } 14 \text{ (Romania) to } 82 EUR \text{ (Netherlands)}$

*A better approximation than flat costs – without data on resource utilization in EU-27


Cost of illness: country-specific estimates in the EU-27

Objectives of the presentation

- Generate country-specific cost of illness estimates in the EU-27
- Express the EU health burden of campylobacteriosis in QALYs
- Re-run the published Campylobacter model with the adjusted input parameters
 - re-evaluate the selected strategy
 - (strategic pricing for interventions in development)

Disease outcome tree of human campylobacteriosis in the EU (2015)

QALY

Key advantages of QALY versus DALY estimates

	DALY	QALY
Life expectancy	Lost years are assumed based on Japanese or national statistics	Gained years are directly observable
Disability weight factor determination	Expert panel preferences	Societal preferences (tax payers)
Use in health technology assessment in the EU	Marginal	Extensive
Explicit cost- effectiveness thresholds	In theory (WHO)	In practice (in some EU countries)

A QALY based estimate of acute gastroenteritis, Guillain-Barré Syndrome and reactive arthritis burden due to human campylobacteriosis in the EU

	EQ-5D ¹	Disutility ²	Duration ³	Outcome probability ³	QALY loss / 1000 cases
GE mild (no GP)	11221	-0.227	3.48 days	76.27%	1.64
GE moderate (GP)	11321 (25%) 21321 (25%)	-0.491 -0.551	9.72 days	22.72%	3.12
GE severe (hospital)	11311 (25%) 21331 (25%)	-0.406 -0.616	14.39 days	0.97%	0.20
GE mortality	death	-1	15.6 years	0.0424%	6.61
GE Total					11.58 QALYs

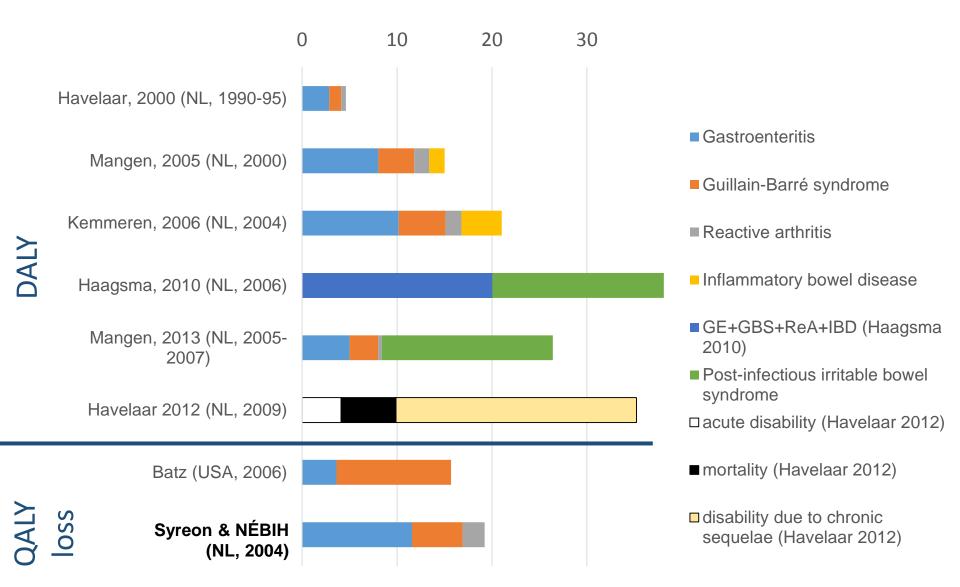
	QALY loss per case ⁴	Outcome probability ³	QALY loss / 1000 cases
Guillain-Barré Syndrome	5.32	0.1%	5.32 QALYs

	EQ-5D⁵	Disutility ²	Duration ³	Outcome probability ³	QALY loss / 1000 cases
Reactive arthritis	11221	-0.227	222 days	1.69%	2.33 QALYs

¹ Havelaar 2000

² Greiner 2003

³ Kemmeren 2006


⁴ Batz 2014

⁵ Hurst 1997 (median of RA mildest

class)

TOTAL QALY loss / 1000 cases 19.23 QALYs

A QALY-based burden of disease estimate for the EU, per 1000 cases

Discounted model input parameters

Preference for gains of all types occurring earlier \rightarrow future amounts shall be discounted

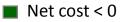
- **Intervention costs** are discounted in the model (annual rate 4%)
- Cost of illness discounted: minimal change

	GE	GBS	ReA
Effect of 4% discount rate (Kemmeren 2006)	No change	-1.3 EUR/case	No change

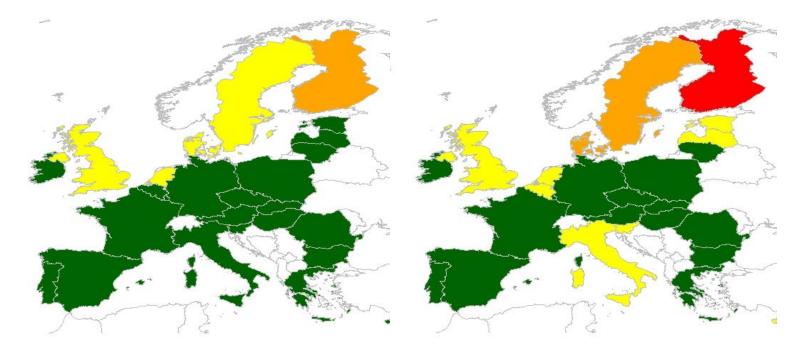
Health burden estimate:


	Undiscounted	Discounted (4%)
GE	11.58 QALYs	9.96 QALYs
GBS	5.32 QALYs	2,94 QALYs
ReA	2.33 QALYs	2.33 QALYs
Total	19.23 QALYs / 1000 cases	15.23 QALYs / 1000 cases

Objectives of the presentation


- Generate country-specific cost of illness estimates in the EU-27
- Express the EU health burden of campylobacteriosis in QALYs
- Re-run the published Campylobacter model with the adjusted input parameters
 - re-evaluate the selected strategy
 - (strategic pricing for interventions in development)

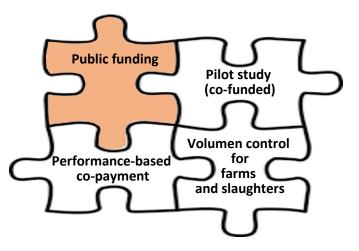
Cost-effectivenes of the selected strategy (F1,F3,S1,T1,T2)


Original model

ICER < 1x GDP per capita

Adapted disease burden estimates

EU-27 net cost-353 million EUR / year-85 million EUR / yearEU-27 health gain-67 300 DALY / year26 400 QALY / year


The presented model conclusions are subject to several limitations

• Key sources of uncertainty include:

- Disease burden data
- Efficacy of interventions
- Real-world uptake
- Interventions in other countries exporting broilers...

Dealing with uncertainty in/of cost-effectiveness evaluations:

- Fine-tuning of model input parameters
- Sensitivity analyses
- Risk sharing of stakeholders

Summary

- Need for country-specific cost of illness data
- QALY is a suitable methodology for disease burden estimation, with significant advantages
- Even re-running the original model with the adjusted (more conservative) input parameters results in a highly cost-effective intervention policy in case of *Campylobacters*
- There are similarities in food safety analysis and health technology assessment
 - funded from public resources;
 - with the primary aim of generating health benefits;
 - must consider disease burden, intervention feasibility, effectiveness, cost, equity, stakeholder interests ...
- Use different methodology and metrics...
 - ... time to move towards integration?

References

M. **BATZ** *et al:* Disease-Outcome Trees, EQ-5D Scores, and Estimated Annual Losses of Quality-Adjusted Life Years (QALYs) for 14 Foodborne Pathogens in the United States. *Foodborne Pathogens and Disease* (**2014**), 11:5, 395-402.

EFSA (2011) Scientific opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA Journal (**2011**), 9(4): 2105.

W. **GREINER** *et al*: A single European currency for EQ-5D health states. Results from a six-country study. *Eur J Health Econom* (2003), 4, 222–231.

J. A. **HAAGSMA** *et al*: Disease burden of post-infectious irritable bowel syndrome in The Netherlands. *Epidemiol. Infect.* **(2010)**, 138, 1650–1656.

H. HAVELAAR et al: Health burden in the Netherlands due to infection with thermophilic Campylobacter spp. Epidemiol. Infect. (2000), 125, 505-522.

H. HAVELAAR et al: Disease burden of foodborne pathogens in the Netherlands, 2009. International Journal of Food Microbiology (2012), 156, 231–238.

P. HOFFSTETTER et al: Selecting human health metrics for environmental decision-support tools. *Risk Anal* (2000), 22, 965-983.

N. P. **HURST** *et al*: Measuring health-related quality of life in rheumatoid arthritis: validity, responsiveness and reliability of EUROQOL (EQ-5D). *British Journal of Rheumatology* (**1997**), 36, 551-559.

J.M. **KEMMEREN** *et al*: Priority setting of foodborne pathogens. Disease burden and costs of selected enteric pathogens. *RIVM report* 330080001/2006 (**2006**).

M.-J. J. **MANGEN** *et al:* The costs of human Campylobacter infections and sequelae in the Netherlands: A DALY and cost-of illness approach. *Acta Agriculturae Scandinavica, Section C — Food Economics* (**2005**), 2:1, 35-51.

M.-J. J. **MANGEN** *et al:* The Pathogen- and Incidence-Based DALY Approach: An Appropriated Methodology for Estimating the Burden of Infectious Diseases. *PLoS ONE* (**2013**), 8(11): e79740.

Thank You for your attention!

Ákos Bernard JÓŹWIAK

National Food Chain Safety Office, Hungary (NÉBIH) jozwiaka@nebih.gov.hu

International Conference on Prevention and Control of Campylobacter in the Poultry Production System

