Selection of a monoclonal antibody by ELISA, immunoblotting and Quartz Crystal Microbalance technology for immunohistochemical detection of Mycoplasma mycoides subsp. mycoides

Mirella Luciani*, Gisella Armillotta, Laura Manna, Antonella Ciarelli, Tiziana Di Febo, Ivanka Krasteva, Attilio Pini, Flavio Sacchini and Anna Rita D’Angelo

OIE Reference Laboratory for CBPP, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100 Teramo, Italy

*Corresponding author at: OIE Reference Laboratory for CBPP, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100 Teramo, Italy. Tel.: +39 0861 332447, e-mail: m.luciani@izs.it.

Summary

An immunohistochemical (IHC) technique was optimised using a monoclonal antibody (MAb) to detect Mycoplasma mycoides subsp. mycoides (Mmm), the agent of Contagious Bovine Pleuropneumonia (CBPP), in sections of lung tissue. A panel of MAbs was produced and screened for Mmm specificity and for cross-reactivity against other mycoplasmas belonging and not belonging to the Mycoplasma mycoides cluster, using in parallel indirect ELISA (i-ELISA) and Immunoblotting (IB). Based on i-ELISA and IB characterization data, 1 MAb (clone 3G10E7) was selected and its highest affinity vs Mmm was confirmed by the Quartz Crystal Microbalance (QCM) technology. Afterwards, IHC analyses were conducted to compare MAb 3G10E7 vs rabbit Mmm specific hyperimmune serum using lung tissue sections of CBPP infected and CBPP negative animals. Results suggest that screening of MAbs using in parallel ELISA, IB, and QCM technology enables to select high affinity target specific MAbs. Immunohistochemical results demonstrated that MAb 3G10E7 improved IHC performances, showing reduced background staining and no cross-reactivity against Mycoplasma bovis, which is responsible of pneumonia in cattle.

Accepted: 31.07.2015 | Available on line: 15.07.2016

Keywords

Biosensor, Contagious bovine pleuropneumonia, Immunohistochemistry, Monoclonal antibody, Mycoplasma mycoides subsp. mycoides, Quartz Crystal Microbalance.

Selezione mediante ELISA, immunoblotting e microbilancia a cristalli di quarzo di un anticorpo monoclonale e suo utilizzo in immunoistochemica per la ricerca di Mycoplasma mycoides subsp. mycoides

Mirella Luciani*, Gisella Armillotta, Laura Manna, Antonella Ciarelli, Tiziana Di Febo, Ivanka Krasteva, Attilio Pini, Flavio Sacchini and Anna Rita D’Angelo

OIE Reference Laboratory for CBPP, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100 Teramo, Italy

*Corresponding author at: OIE Reference Laboratory for CBPP, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100 Teramo, Italy. Tel.: +39 0861 332447, e-mail: m.luciani@izs.it.

Riassunto

In questo lavoro è stata ottenuta una metodica immunoistochimica (IIC) per la ricerca, in sezioni di tessuto polmonare, di Mycoplasma mycoides subsp. mycoides (Mmm), l’agente della pleuroploopneumonia contagiosa bovina (PPCB), utilizzando un anticorpo monoclonale (MAb). Un pannello di MAbs è stato prodotto e caratterizzato: la specificità dei MAbs verso Mmm e la cross-reattività verso altri micoplasmi appartenenti e non appartenenti al Mycoplasma mycoides cluster sono state testate utilizzando in parallelo l’ELISA indiretta (i-ELISA) e l’immunoblotting (IB). Dai risultati ottenuti in i-ELISA e IB, un MAb (clone 3G10E7) è stato selezionato e l’elevata affinità verso Mmm è stata confermata mediante la tecnica della microbilancia a cristalli di quarzo (MCQ). Successivamente, sono state effettuate analisi immunoistochemiche per comparare i MAb 3G10E7 e un siero iperimmune di coniglio specifico per Mmm utilizzando sezioni di tessuto polmonare di animali positivi per PPCB e di animali negativi. I risultati ottenuti suggeriscono che lo screening dei MAbs, effettuato utilizzando in parallelo l’ELISA, l’immunoblotting e la tecnologia MCQ, permette di selezionare un MAb con alta affinità e specificità per l’antigene di interesse. I risultati dell’immunoistochemica hanno dimostrato che il MAb 3G10E7 migliora le prestazioni del metodo IIC, fornisce segnali di fondo più bassi e non presenta cross-reazioni verso Mycoplasma bovis, responsabile di polmonite nei bovini.

Accepted: 31.07.2015 | Available on line: 15.07.2016

Parole chiave

Anticorpi monoclonali, Biosensori, Immunistochemica, Mycoplasma mycoides subsp. mycoides, Microbilancia a cristalli di quarzo, Pleuroploopneumone contagiosa bovina.
Monoclonal antibodies and immunohistochemistry for CBPP

Luciani et al.

Introduction

Contagious Bovine Pleuropneumonia (CBPP) is a serious respiratory disease affecting ruminants of the Bos genus, mainly cattle and domestic buffaloes. Contagious Bovine Pleuropneumonia is caused by Mycoplasma mycoides subsp. mycoides (Mmm) and is characterised by severe exudative inflammation involving lung and pleura. In acute cases, animals show respiratory distress with coughing and high fever; disease progression may result in animal death. A severe and usually monolateral fibrinous pleuropneumonia, with marbling and enlargement of interlobular septa, is observed at post mortem examination. In CBPP endemic areas, subacute or chronic forms and lung sequestra, mainly characterised by areas of necrotic parenchima surrounded by fibrotic tissue, are commonly detected (Provost et al. 1987, OIE 2014).

Since rinderpest has been eradicated, CBPP represents the most important threat to cattle farming in sub-Saharan Africa. The economic impact is related to direct and indirect production losses and costs for the control of the disease (Tambi et al. 2006). Contagious Bovine Pleuropneumonia is included in the diseases notifiable to the World Organization of Animal Health (OIE); infected countries or zones are subjected to live animal export restrictions, as indicated in the OIE Terrestrial Animal Health Code (OIE 2014).

Between the 80's and early the 90's, CBPP outbreaks have occurred in Southern Europe, involving Portugal, Spain, France, and Italy. Disease was eradicated from Europe by 1999, through a policy of 'stamping out' of infected herds, animal movement restriction, and traceback. Surveillance was based on serological testing and post mortem inspection of slaughtered animals (Regalla et al. 1996, Giovanni et al. 2000).

Laboratory diagnosis of CBPP is based on indirect tests such as the complement fixation test (CFT), ELISA, and immunoblotting (IB), as well as direct methods such as culture and polymerase chain reaction (PCR) (OIE 2014). Even if not routinely used to diagnose CBPP, immunohistochemical (IHC) technique remained for long time among the diagnostic tests proposed to demonstrate the presence of Mycoplasma mycoides subsp. mycoides (Mmm) or its antigens (OIE 2008). In the 2001 Report of the EU Scientific Committee on Animal Health and Animal Welfare (European Commission 2001), PCR and IHC were considered tests of choice in presence of carcasses with suspect lesions, when serum was not available and mycoplasma culture from lung tissue was inconclusive because of the poor conditions of the carcass or for logistic difficulties.

Immunohistochemical technique has also been used to correlate histological lesions recorded in lung and kidney with the presence of Mmm (Ferronha et al. 1990, Rodriguez et al. 1996, Scanziani et al. 1997, Grieco et al. 2001). To date, molecular techniques (conventional PCR, PCR-REA and nested-PCR) are largely preferred to IHC for routine diagnosis. However, pathogenic investigations still rely on IHC, which enables to correlate the presence of the antigen with tissue pathological changes. One of the major limitations in development and optimization of IHC methods is the lack of highly antigen specific reagents (Rodriguez et al. 1996). In the past, IHC was largely based on the use of polyclonal antibodies, which pose major drawbacks as they are limited in availability. Animals are continuously required for antibody production, and there is a considerable batch to batch variability that affects test standardization. At the same time, in presence of lung tissue sections characterised by great quantity of fibrin, the use of rabbit hyperimmune polyclonal serum (RHS) still provides results of difficult interpretation because of high background staining due to unspecific binding to components of the fibrinous matrix. Non-specific staining has also been observed in lungs showing CBPP-like lesions (sequestra) and characterised by a subacute-chronic necrotizing fibrinous pneumonia, caused by M. bovis or by a combined infection of M. bovis and Mannheimia haemolitica (Radaelli et al. 2008).

Conversely, use of monoclonal antibodies (MAbs) guarantees large quantities of identical antibodies, ensuring reproducible results. Rabbit hyperimmune polyclonal serum was originally combined with the revealing system Peroxidase-Anti Peroxidase in order to detect Mmm by IHC (Bashiruddin et al. 1999). The technique has been further implemented using the Avidin-Biotin system (D’Angelo et al. 2010).

The MAb M92/20 produced by Ayling and colleagues, showing no background noise but some cross-reactivity with mycoplasmas belonging to the cluster, was used to test 11 CBPP affected lungs from Portuguese cattle. The immunohistochemical technique detected all, while the polymerase chain reaction and bacteriological culture detected 5 and 4 cases, respectively (Ayling et al. 1998). Though the sample size was small, it illustrated that IHC is a sensitive and robust test for CBPP diagnostic.

The aim of this study was the production of MAbs specific for Mmm, to optimize immunohistochemical detection of Mmm in lung tissue sections. Selection of MAbs was made by i-ELISA and IB combined with the innovative Quartz Crystal Microbalance (QCM) technology to assess MAb-antigen binding affinity. Quartz Crystal Microbalance is a sensitive balance capable of measuring changes in mass at a molecular level: molecules that bind to the quartz crystal increase the mass and cause a change in
the vibration frequency, that is measured and used to characterise real-time molecular interactions, without labeling or chemical modifications (Marx 2003, Johansson 2010, Vashist and Vashist 2011).

Materials and methods

Mycoplasma strains and antigens

Reference and field strains of the Mycoplasma mycoides cluster (M. mycoides subsp. mycoides, M. mycoides subsp. capri - Mmc -, M. capricolum subsp. capripneumoniae - Mccp -, M. capricolum subsp. capricolum - Mcc -, M. leachii) together with strains of M. agalactiae and M. bovis were grown from master seeds, stored at -20°C at the OIE CBPP Reference Laboratory of the Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’ of Teramo (IZSAM) (Table I). After rapid thawing at 37°C, 1 ml of each master seed strain was inoculated into Pleuro pneumonia-Like Organisms (PPLO) medium (Becton-Dickinson, Franklin Lakes, New Jersey, USA) and incubated from 2 to 4 days at 37°C. Mycoplasma cells were collected by centrifugation (9,000 x g for 40 minutes) and the pellets washed 3 times in 0.01 M phosphate buffered saline, pH 7.2 (PBS). After the last centrifugation, pellets were resuspended in PBS, heat-inactivated, and protein concentrations determined by the bicinchoninic acid method (BCA Protein Assay Kit, Thermo Scientific, Illinois, USA).

Immunization of mice

For the production of MAbs, BALB/c mice of 6/8 weeks of age were inoculated with Mmm strain 95 heat inactivated. Animal experimentation was carried out in compliance with Italian national law\(^1\) implementing Directive 86/609/EEC of the Council of the European Communities on the protection of animals used for experimental and other scientific purposes\(^2\). The antigen, diluted to a protein concentration of 80 μg/ml, was emulsified with complete Freund adjuvant (CFA, Sigma, St. Louis, Missouri, USA) and administered intraperitoneally; 21 days later a second immunization was performed using the same concentration of antigen emulsified with incomplete Freund adjuvant (IFA, Sigma, St. Louis, Missouri, USA). Subsequently, on days 27, 30, and 54, inocula had a protein concentration of 80, 40, and 50 μg/ml in PBS, respectively. Finally, on day 67, 80 μg/ml of antigen in PBS was given. Three days later, the mice were sacrificed, the spleen collected and splenocytes subjected to cell fusion with murine myeloma cells Sp2/O-Ag-14 (ATCC CRL-1581™). The antibody-secreting hybridomas were screened by

Table I. Mycoplasma strains used in the study.

<table>
<thead>
<tr>
<th>Mycoplasma strains</th>
<th>Country of origin</th>
<th>Year of isolation</th>
<th>Host</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. mycoides subsp. mycoides (Mmm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Italy</td>
<td>1992</td>
<td>Cattle</td>
<td>Goncalves et al. 1998</td>
</tr>
<tr>
<td>PG1</td>
<td>Africa</td>
<td>1931</td>
<td>Cattle</td>
<td>Cheng et al. 1995</td>
</tr>
<tr>
<td>Afadé</td>
<td>Cameroon</td>
<td>1968</td>
<td>Cattle</td>
<td>Cheng et al. 1995</td>
</tr>
<tr>
<td>B17</td>
<td>Chad</td>
<td>1967</td>
<td>Cattle</td>
<td>Cheng et al. 1995</td>
</tr>
<tr>
<td>57/13</td>
<td>Italy</td>
<td>1992</td>
<td>Cattle</td>
<td>Goncalves et al. 1998</td>
</tr>
<tr>
<td>T1/44</td>
<td>Tanzania</td>
<td>1952</td>
<td>Vaccine strain</td>
<td>Yaya et al. 2004</td>
</tr>
<tr>
<td>M. mycoides subsp. capri (Mmc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT 10137</td>
<td></td>
<td>1950</td>
<td>Goat</td>
<td>-</td>
</tr>
<tr>
<td>NCT 11706</td>
<td></td>
<td>1955</td>
<td>Goat</td>
<td>-</td>
</tr>
<tr>
<td>2269</td>
<td>Italy</td>
<td>2010</td>
<td>Goat</td>
<td>-</td>
</tr>
<tr>
<td>M. capricolum subsp. capripneumoniae (Mccp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT 10192 (F38)</td>
<td></td>
<td>1985</td>
<td>Goat</td>
<td>-</td>
</tr>
<tr>
<td>M. capricolum subsp. capricolum (Mcc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT 10154 (California kid)</td>
<td></td>
<td>1954</td>
<td>Goat</td>
<td>-</td>
</tr>
<tr>
<td>W/17</td>
<td>Turkey</td>
<td>2006</td>
<td>Goat</td>
<td>-</td>
</tr>
<tr>
<td>M. leachii PG50</td>
<td></td>
<td>1970</td>
<td>Cattle</td>
<td>-</td>
</tr>
<tr>
<td>M. agalactiae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT 10123</td>
<td>UK</td>
<td>1955</td>
<td>Goat</td>
<td>-</td>
</tr>
<tr>
<td>M. bovis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9573/08</td>
<td>Italy</td>
<td>2008</td>
<td>Cattle</td>
<td>-</td>
</tr>
<tr>
<td>5810/07</td>
<td>Italy</td>
<td>2007</td>
<td>Cattle</td>
<td>-</td>
</tr>
<tr>
<td>11003/08</td>
<td>Italy</td>
<td>2008</td>
<td>Cattle</td>
<td>-</td>
</tr>
</tbody>
</table>
Monoclonal antibodies and immunohistochemistry for CBPP

Luciani et al.

Monoclonal antibodies and immunohistochemistry for CBPP

Characterization of MAbs vs Mmm

Monoclonal antibodies were isotyped using the Mouse-Typer Isotyping Panel (Bio-Rad, Hercules, California, USA). Cross-reaction of selected MAbs against a panel of mycoplasmas was assessed by i-ELISA. Briefly, 96-well microplates (PolySorp, NUNC, Roskilde, DK) were coated with 10 μg/ml of the different mycoplasma antigens in order to test hybridoma supernatants. As secondary antibody, ECL anti-mouse IgG conjugated with horseradish peroxidase (GE Healthcare, Uppsala, Sweden) was used; the 3,3’,5’-Tetramethylbenzidine (TMB, Sigma, St. Louis, Missouri, USA) was adopted as chromogenic substrate. Reading was performed with a biophotometer (Bio-Rad, Hercules, California, USA) at a wavelength of 450 nm. Based on the values of optical density (OD 450nm), the following levels of positivity were assigned: + + + strong (OD 450nm ≥ 2.5), + + moderate (2.5 ≥ OD 450nm ≥1.5), + weak (1.5 ≥ OD 450nm ≥ 0.3), - absent (OD 450nm ≤ 0.3). Monoclonal antibodies that were most reactive in i-ELISA against the strains of the mycoplasmal cluster and not reactive vs strains not belonging to the cluster, were characterised by IB test. For IB analysis, MAbs with IgM isotype were purified on affinity chromatography using a HiTrap IgM Purification HP column (GE Healthcare, Uppsala, Sweden). Only 1 of the MAbs, with isotype IgG2a, was purified by a column HiTrap rProtein A FF (GE Healthcare, Uppsala, Sweden) according to the manufacturer instructions.

The different mycoplasma antigens (2.5 μg/well) were subjected to electrophoretic separation in SDS-PAGE with NuPAGE 10% Bis-Tris Gels Mini (Life Technologies, Carlsbad, California, USA) and transferred onto nitrocellulose membrane with iBlot Dry Blotting System (Life Technologies, Carlsbad, California, USA). After blocking with 5% skimmed milk in 0.01 M phosphate buffered saline, pH 7.2, containing 0.05% Tween 20 (PBST), membranes were incubated with the purified MAbs. The detection of immune complexes was performed using the ECL anti-mouse IgG conjugated with horseradish peroxidase (GE Healthcare, Uppsala, SW) and a chemiluminescent substrate (ECL Select Western Blotting Detection Reagent, GE Healthcare, Uppsala, SW). The analysis of the results was performed using the Quantity One Quantitation Software version 4.3 (Bio-Rad, Hercules, California, USA). Monoclonal antibodies showing 1 or more immunoreactive bands for each mycoplasma strain were considered positive for that particular antigen. The results of the i-ELISA and IB were analysed by performing the 2 tests in parallel. The MAbs anti-Mmm were selected according to the following criteria: positivity to both i-ELISA and IB for all the analysed Mmm strains, maximum intensity of the ELISA reaction to Mmm, absence of cross-reaction, in i-ELISA and IB, against all the other mycoplasma object of the study and different from Mmm and Mmc.

Measurement of MAb/antigen binding affinity by QCM

Based on MAb characterization analyses, MAb 3G10E7 was selected for preliminary studies of antigenic affinity conducted with the Attana Cell 200 Biosensor (Attana, Stockholm, Sweden), able to measure the molecular interactions in real time using QCM technology. The MAb 3G10E7 was immobilised on Attana LNB carboxyl chip by the Amine Coupling Kit (Attana, Stockholm, Sweden); after activation of the carboxyl groups, the MAb 3G10E7 (diluted to a concentration of 25 μg/ml in 10 mM HEPES Buffer Saline containing 0.05% Tween 20, running buffer) was injected, at a flow rate of 10 μl/min, in the Channel A of the instrument. Then, the remaining active groups were deactivated. The surface of the Channel B was activated and deactivated in the absence of MAb 3G10E7, in order to highlight the presence of any non-specific binding with a negative reference chip; Mmm strain 95 (positive control), Mcc California kid, Mccp F38 and M. bovis 9573/08 (negative controls) were diluted in the running buffer at a concentration of 50 μg/ml and injected in channel A (activated chip) and in channel B (reference negative chip) at a flow rate of 5 μl/ml. The experiment was performed in triplicate and the affinity values were quantified in terms of frequency variation (Hz). After each antigen injection, chips surface was regenerated using 50 mM NaOH for 10 seconds. The data generated for each experiment were collected by Attester 3.1 software and analyzed with Clamp XP software.

Immunohistochemistry

The IHC was performed on histological sections of 37 paraffin-embedded lung tissue blocks obtained from 20 animals experimentally infected with Mmm, showing typical CBPP pathological lesions confirmed by the isolation of Mmm (Scacchia et al. 2007).

Tissue sections of paraffin-embedded lungs collected from 6 healthy animals were used as negative controls; presence of Mmm was excluded by bacteriological culture and PCR analyses (Bashiruddin et al. 1999). Histological sections of 5 paraffin-embedded lung tissue blocks, collected from an animal infected with M. bovis, were also
Results

Characterization of MAbs vs Mmm

Forty three clones secreting MAbs vs Mmm strain 95 were obtained, among them, 7 MAbs showing in i-ELISA the highest values of optical density were selected. Six MAbs were IgM and 1 (2C6E6) was IgG2a. Results of cross-reactions vs the panel of mycoplasma antigens, checked by i-ELISA, indicated that MAbs 3G10D6 and 3G10E7 were the most immunoreactive against Mmm, but no cross-reactions were observed against the other analysed mycoplasmas. On the contrary, RHS reacted with all the Mmm strains, with the 3 strains of Mmc, with Mccp, and with the 2 strains of Mcc under test (Table II).

Immunoblotting results showed different patterns of reactivity of MAbs 3G10D6 and 3G10E7 against the strains of the mycoides cluster and strains not belonging to the cluster. Both MAbs recognized all Mmm strains. At the same time they also showed a weak reaction against Mmc strain NCTC 11706. Interestingly, no reactivity was observed vs Mmc strain NCTC 10137 and the field strain 2269. However, conversely to the MAb 3G10D6, the MAb 3G10E7 did not cross-react with M. leachii PG50 (Table III).

Measurement of MAb/antigen binding affinity by QCM

Analysis conducted on Attana Cell 200 Biosensor confirmed a strong binding affinity between MAb 3G10D6 and Mmm strain 95 (positive control), highlighted by a change in frequency of 90 Hz in all the three experiments done; no binding was detected between MAB 3G10D6 and the three negative controls (Mcc California kid, Mccp F38 included in the present study. Pneumonia caused by M. bovis and Mannheimia haemolytica had been confirmed by culture and PCR (Bashiruddin et al. 2005). Either RHS anti Mmm strain B17, produced at IZSAM (Ferronha et al. 1988, Santini et al. 1992), or the MAb 3G10E7 supernatant were used as primary antibodies in the IHC method, after antigen retrieval by enzymatic digestion with trypsin 0.01% in 0.15 M Tris buffered solution, pH 7.8 at 37°C. The RHS and the MAB were diluted 1:2,560 and 1:10 in 0.15 M Tris buffered solution, pH 7.6, containing 1% bovine serum albumin (BSA, Sigma, St. Louis, Missouri, USA), respectively. A rabbit serum negative for Mmm and Dulbecco Modified Eagle Medium (DMEM, Sigma, St. Louis, Missouri, USA) were used as negative controls for RHS and MAB 3G10E7, respectively. Streptavidin Biotin Peroxidase Complex (StreptABC-Perox, DAKO, Glostrup, Denmark) was used as detection system (D'Angelo et al. 2010).

Table II. Reactivity of MAbs and rabbit hyperimmune polyclonal serum (RHS) vs different Mycoplasma strains. The intensity of the reaction is expressed in i-ELISA based on the values of optical density (OD 450nm).

<table>
<thead>
<tr>
<th>Strains</th>
<th>MAbs</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3B2E4</td>
<td>3B2B6</td>
</tr>
<tr>
<td>Mmm 95</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mmm PG1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mmm Afadé</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mmm B17</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mmm 57/13</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mmm T1/44</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mmc (NCTC 10137)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Mmc (NCTC 11706)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Mcc W/17</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>M. leachii PG50 (NCTC 10133)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>M. agalactiae (NCTC 10123)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>M. bovis 9573/08</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>M. bovis 5810/07</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>M. bovis 11003/08</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ + + = strong (OD 450nm > 2.5); + + = moderate (2.5 > OD 450nm ≥ 1.5); + = weak (1.5 > OD 450nm ≥ 0.3); - = absent (OD 450nm ≤ 0.3).
and *M. bovis* 9573/08), for which the change in frequency was 5 Hz. Moreover, no binding of *Mmm* strain 95 and the three negative controls with the reference negative chip was recorded.

Immunohistochemistry

The results of IHC tests are shown in Table IV. Specific *Mmm*-immune reactivity (IR) was detected using either RHS or MAb 3G10E7. However, the tests carried out with the RHS showed a homogeneous, non-specific and diffuse IR on fibrin (Figure 1) and onto the fibers of the connective tissue septa. In a lung section, such deposition led to an inconclusive result. Conversely, using the MAb 3G10E7 the presence of *Mmm* was highlighted by an intense and granular staining limited to the cytoplasm of alveolar macrophages (Figure 2), in the debris of necrotic areas, in the inflammatory cells of fibrotic septa and at perivasal level (Figure 3). Furthermore, while using MAb 3G10E7 no cross-IR was observed on sections of lung infected by *M. bovis* and *Mannheimia haemolytica* (Figure 4A), RHS gave a distinctly non-specific staining (Figure 4B). With regard to the sections of the lungs of healthy animals, there was no evidence of IR with both MAb 3G10E7 and RHS.

Discussion

The aim of this study was the production of a panel of MAbs to improve the IHC method for detection of *Mmm* in tissue samples when CBPP is suspected.
Our approach for MAbs characterisation was based on a combination of i-ELISA and IB methods against homologous Mmm strains and potentially cross-reactive heterologous mycoplasma antigens (Mmc, Mccp F38, Mcc, M. leachii PG50, M. agalactiae and M. bovis) so to select a panel of MAbs showing the best diagnostic performances. It is known that in some cases i-ELISA and IB give conflicting results and this is due to differences in antigen preparation. In this study, a heat-denatured antigen was used for i-ELISA, while antigens denatured by heat and chemical substances, as reducing agents (β-mercaptoethanol or dithiothreitol) and surfactants (SDS), were used in SDS-PAGE and IB. In particular, reducing agents break protein disulfide bonds and surfactants cause protein unfolding and subsequent loss of tertiary and quaternary structures. This results in the disappearance of antigen conformational epitopes and in the unmasking of linear epitopes recognized by antibodies. However, in our work, this approach proved to be efficacious to identify 1 MAb (clone 3G10E7), which reacted exclusively to Mmm strains both in i-ELISA and IB. The reactivity of MAB 3G10E7 vs Mmc NCTC 11706, observed with IB, was expected because the Mmm and Mmc share genomic and antigenic features (Thiaucourt et al. 2011). Previous studies demonstrated that bovine infection with Mmc in natural condition is very improbable, although the endotracheal intubation of Mmc in Trypanosoma congoense immunodepressed animals may determine fibrinous pleuropneumonia (Rosendal 1981, Rosendal 1983, Ajuwape et al. 2006).

The Attana biosensor, used in parallel with i-ELISA and IB, allowed us to evaluate the binding affinity of the selected MAb vs its antigen (Mmm strain 95), confirming the high specificity for Mmm and the lack of affinity for Mccp and Mcc, belonging to the Mycoplasma mycoides cluster, and for M. bovis, thus further confirming the results obtained by i-ELISA and IB. The ability to have information on the mechanisms of interaction between the molecules, in particular between antigens and antibodies, as well as the ability to measure the degree of affinity of these interactions could be very useful in the screening of MAbs and increases the possibility to select antibodies with the best properties for the use in diagnostic tests, such as the highest affinity vs target antigens, the slowest off-rate and the shortest incubation times (Johansson 2010).

Similarly to what has been previously reported by Rodriguez and colleagues (Rodriguez et al. 1996) and Ayling and colleagues (Ayling et al. 1998), we also observed a clear improvement of the IHC method with a reduced background staining using our MAb 3G10E7. In addition, we also demonstrated that cross-reactivity of MAb 3G10E7 is exclusively directed against some strains of Mmc, but not against other mycoplasmas not belonging to the mycoides cluster. Furthermore, specificity of MAb 3G10E7 for Mmm observed by i-ELISA, IB, and QCM was also...
confirmed in sections of lung infected by *M. bovis* and *Mannheimia haemolytica*, also responsible of pneumonia in cattle.

The IHC is able to locate both the whole pathogen and mycoplasma fragments that retain the antigenic power. Hence, IHC may still represent, from a diagnostic point of view, an important albeit not innovative tool in presence of infected animals treated with antibiotics. In Africa, the use of antibiotics is increasingly frequent in order to reduce clinical symptomatology and losses due to the disease. It has been shown that in some cases antibiotic treatment may resolve infection and even lead to recovery (Yaya et al. 2004, Huebschle et al. 2006) even if incorrect application may lead to antibiotic resistance and development of clinically healthy and serologically negative carriers. Antibiotic treatment may mask pathological changes and may make difficult microbiological isolation of the mycoplasmas. Molecular techniques remain the preferred method to confirm the diagnosis of the disease when the organism is isolated from clinical samples. However, such techniques could also give inconclusive results when applied directly to tissue samples, because of the presence of PCR inhibitors. Thus, IHC may become the elective choice to assess the presence of mycoplasmas or their fragments in tissue samples.

The identification of a MAb anti-*Mmm* more specific than rabbit polyclonal antibodies, offers new perspective in studying disease pathogenic mechanism and host immune response, allowing to better correlate the presence of the pathogen within the tissue lesions and cellular and humoral components of the hosts immune response involved in the pathological process.

References

Rosendal S. 1981. Experimental infection of goats, sheep and calves with the Large Colony type of Mycoplasma mycoides subsp. mycoides. Vet Pathol, 18, 71-81.

Rosendal S. 1983. Susceptibility of goats and calves after experimental inoculation or contact exposure to a Canadian strain of Mycoplasma mycoides subsp. mycoides isolated from a goat. Can J Comp Med, 47, 484-490.

