Identification, antimicrobial susceptibility, and virulence factors of Enterococcus spp. strains isolated from Camels in Canary Islands, Spain

Maria Teresa Tejedor-Junco¹, Margarita González-Martín¹, Noé Francisco Rodríguez González² & Carlos Gutiérrez¹

¹ Institute of Biomedical and Health Research, University of Las Palmas de Gran Canaria, P.O. BOX 550, 35080 Las Palmas de Gran Canaria, Canary Islands, Spain.
² Facultad de Ciencias Pecuarias, Escuela Superior Politécnica del Chimborazo, Riobamba, Provincia del Chimborazo, Ecuador.

* Corresponding author at: Institute of Biomedical and Health Research, University of Las Palmas de Gran Canaria, P.O. BOX 550, 35080 Las Palmas de Gran Canaria, Canary Islands, Spain. Tel.: + 34 928 454358, e-mail: mariateresa.tejedor@ulpgc.es.

Veterinaria Italiana 2015, 51 (3), 179-183. doi: 10.12834/VetIt.322.1280.2
Accepted: 18.01.2015 | Available on line: 30.09.2015

Summary
This study investigated the presence of Enterococcus spp. strains in camel faeces, their virulence factors, and resistance to the antibiotics commonly used as therapy of enterococcal infections. One hundred and seventy three Enterococcus strains were isolated and identified to species level using polymerase chain reaction (PCR). Susceptibility to 11 antimicrobials was determined by disk diffusion method. Minimal Inhibitory Concentrations (MIC) of penicillin, ampicillin, vancomycin, teicoplanin, gentamicin, and streptomycin were all determined. Genes encoding resistance to vancomycin, tetracycline, and erythromycin as well as genes encoding some virulence factors were identified by PCR. Enterococcus hirae (54.3%) and Enterococcus faecium (25.4%) were the species most frequently isolated. None of the strains were resistant to vancomycin, teicoplanin, ampicillin or showed high level aminoglycoside resistance (HLAR). Strains resistant to rifampicin (42.42%) were those most commonly found followed those resistant to trimethoprim – sulfamethoxazole (33.33%). The genes tetM, tetL, vanC1, and vanC2-C3 were detected in some strains. Virulence genes were not detected. Monitoring the presence of resistant strains of faecal enterococci in animal used with recreational purposes is important to prevent transmission of those strains to humans and to detect resistance or virulence genes that could be transferred to other clinically important bacteria.

Parole chiave
Antimicrobico, Cammello, Enterococcus spp., Virulenza.

Riassunto
Questo studio ha esaminato la presenza, i fattori di virulenza e la resistenza agli antibiotici più comunemente utilizzati in terapia dei ceppi di Enterococcus spp. isolati dalle feci di cammelli. Centosettanta tre ceppi di Enterococcus spp. sono stati isolati e identificati mediante reazione in catena della polimerasi (PCR). La resistenza nei confronti di 11 antibiotici è stata determinata con il metodo di diffusione su dischetto. Minimal Inhibitory Concentrations (MIC) di penicillina, ampicillina, vancomicina, teicoplanina, gentamicina e streptomicina sono state determinate. Geni che codificano per la resistenza a vancomicina, tetraciclina, eritromicina e i geni codificanti per alcuni fattori di virulenza sono stati identificati mediante PCR. Enterococcus hirae (54.3%) e Enterococcus faecium (25.4%) sono state rispettivamente le specie più frequentemente isolate. Nessuno dei ceppi analizzati è risultato resistente a vancomicina, teicoplanina, ampicillina o ha mostrato un elevato livello di resistenza agli aminoglicosidi (HLAR). I ceppi resistenti alla rifampicina (42.42%) sono stati quelli più frequentemente isolati seguiti da quelli resistenti al trimetoprim – sulfametossazolo (33.33%). I geni tetM, tetL, vanC1 e vanC2-C3 sono stati rilevati in alcuni ceppi mentre non sono stati rilevati i geni di virulenza. Monitorare la presenza di ceppi resistenti di enterococchi fecali in animali utilizzati a scopo ricreativo è importante per prevenire la trasmissione all’uomo e per individuare geni di resistenza o virulenza che potrebbero essere trasferiti ad altri batteri clinicamente importanti.
Introduction

Enterococcus has emerged as a major cause of nosocomial infections in human and veterinary medicine (García-Mígura et al. 2014, Bath et al. 2015). Traditionally, enterococcal infections are treated with penicillins, usually in combination with an aminoglycoside. Glycopeptides, especially vancomycin (VAN), are often used to treat enterococcal infections in patients with hypersensitivity to penicillins or in infections due to β-lactam resistant enterococci (Gold 2001). Clinical strains have become increasingly resistant to a broad range of antimicrobial agents, including aminoglycosides, β-lactams, and glycopeptides, limiting treatment options. Factors suspected to enhance the virulence of the bacterium include antibiotic resistance determinants, cytolytic toxin, gelatinase, aggregation substance, extracellular superoxide production and enterococcal surface protein (Mundy et al. 2000, Blendo et al. 2010). Cytolysin exerts activity against a broad spectrum of cell types, including a wide range of gram positive bacteria, eukaryotic cells such as human, bovine, and horse erythrocytes, retinal cells, polymorphonuclear leukocytes, and human intestinal epithelial cells (Cox et al. 2005). The enterococcal cytolsin is of interest because its activities boost enterococcal virulence in infection models. It has also been associated with patient mortality in epidemiological studies (Coburn et al. 2003). The production of cytolsin has also been shown to significantly worsen the severity of endocarditis (Chow et al. 1993). In 2002, Shankar and colleagues (Shankar et al. 2002) found a pathogenicity island (PAI) in vancomycin-resistant Enterococcus faecalis. It encodes several pathogenicity factors, among them the enterococcal surface protein (esp) conferring increased biofilm and colonization, a cytolsin with haemolytic, cytolytic, and antibacterial activity, the aggregation substance, a bile acid hydrolase, surface proteins and general stress proteins. The E. faecalis PAI products contribute in the successful establishment of certain enterococci as nosocomial pathogens (Laverde et al. 2011).

Reservoirs for antibiotic-resistant enterococci have not been completely determined although animals, humans, food and environment have been suspected as sources for some resistant clinical isolates (Descheemaeker et al. 1999, Lu et al. 2002, Van den Bogaard et al. 2002, Iversen et al. 2004, López et al. 2009).

This study investigated the presence of Enterococcus spp. in camel faeces, their virulence factors, and the resistance of these Enterococcus strains to antibiotics commonly used as therapy of enterococcal infections.

Materials and methods

Bacterial isolates and identification

Samples of faeces from camels were obtained directly and sent to Microbiology Laboratory (Las Palmas de Gran Canaria, Canary Islands, Spain) within 4 hours after collection. Samples were plated directly on M-Enterococcus Agar. Plates were incubated at 37ºC and examined at 24 and 48 hours. Colonies from each sample, those showing the appearance of enterococci or those being gram positive cocci with negative reaction for catalase and growing in NaCl 6.5% were considered presumptive enterococci.

Identification of Enterococcus was made by polymerase chain reaction (PCR) (Jackson et al. 2004). The following strains from Colección Española de Cultivos Tipo (Spanish Type Culture Collection, CECT) were used as controls: Enterococcus avium CECT 968 (ATCC 14025), Enterococcus durans CECT 411 (ATCC 19432), Enterococcus hirae CECT 279 (ATCC 8043), Enterococcus gallinarum CECT 970 (ATCC 49573), Enterococcus casseliflavus CECT 969 (ATCC 25788), Enterococcus faecium CECT 410 (ATCC 19434), Enterococcus malodoratus CECT 971 (ATCC 43197) and Enterococcus faecalis ATCC 29212.

Antimicrobial susceptibility tests

Bacterial susceptibility to 11 antibiotics was determined using disk diffusion method: chloramphenicol (C), trimethoprim-sulfamethoxazole (SXT), fosfomycin (FOS), ampicillin (AM), penicillin (P), ciprofloxacin (CIP), erythromycin (E), rifampin (RA), tetracycline (TE), linezolid (LZD), and levofoxacin (LEV).

Minimal Inhibitory Concentrations (MICs) of penicillin, ampicillin, vancomycin (VAN), teicoplanin (TEC), gentamicin (GM), and streptomycin (SM) were determined on Mueller-Hinton agar (Difco, Detroit, Michigan, USA) containing double dilutions of the antibiotics1. Concentrations ranging from 0.06 to 256 mg/L were used for penicillin (Laboratorios Normon, Madrid, Spain), ampicillin (Laboratorios Normon, Madrid, Spain), vancomycin and teicoplanin. Concentrations used for aminoglycosides ranged from 0.06 to 32768 mg/L for SM and to 4000mg/L for GM. High level resistance against streptomycin (Laboratorios Normon, Madrid, Spain) and gentamicin (Laboratorios Normon, Madrid, Spain) were defined as a MIC of >2000 and ≥500 mg/L, respectively. Only 1 bacterial colony per plate was tested.

Enterococcus faecalis ATCC 51299 (HLRG) and ATCC 29212 (susceptible to GM) were used as control strains. We used the PCR protocol described by Poeta and colleagues (Poeta et al. 2005) for the simultaneous detection of the genes encoding resistance to vancomycin, tetracycline, and erythromycin.

Virulence factors

To evaluate the pathogenic ability of isolates, the presence of virulence genes (cylA and cylB) was investigated by PCR.

Results and discussion

One hundred and seventy three Enterococcus strains were isolated. The distribution by species found in this study using PCR was: 54.3% E. hirae, 25.4% E. faecium, 5.8% E. durans, 4.62% E. faecalis, 4.1% E. mundtii, 2.9% E. malodoratus, 1.73% E. casseliflavus, and 1.15% E. gallinarum.

None of the strains were resistant to VAN, TEC, AM or showed HLRAR. Only 11 isolates (6.3%) showed a MIC >8 mg/L for penicillin. Strains resistant to rifampicin (42.42%) were those most commonly found, followed by those resistant to trimethoprim sulfamethoxazole (33.33%). The gene tetM was detected in 9 strains and tetL was detected in 3 strains. Of the 11 (1 strain had both genes), 7 isolates were resistant to tetracycline. VanC1 gene was detected in 2 strains of E. gallinarum. The gene vanC2-C3 was found in 2 strains, both of them identified as E. casseliflavus, a species of Enterococcus that intrinsically harbour this gene. A study conducted by Poeta and colleagues also reports finding these genes in the same species of Enterococcus isolated from wild animals (Poeta et al. 2005); ermA, ermB, ermC, vanA and vanB genes were not detected in any of the strains. Only 1 isolate was resistant to erythromycin.

A combination of penicillin and streptomycin is frequently used in Canary Islands to treat different infections in camels (Tejedor-Junco et al. 2009). Even if we did not find any strain of Enterococcus resistant to penicillin and only 1 strain showed HLRS (MIC > 512 mg/L), MICs values for these 2 antibiotics were close to resistance values. Only 11 strains showed a MIC > 8 mg/L for penicillin, but 26 isolates showed a MIC of 8 mg/L for this antibiotic. In addition to this, 36 strains showed MICs of 256 or 512 mg/L for streptomycin.

The resistance rates among Enterococcus strains isolated from camels were lower than those found among human strains isolated from hospital patients in a Canary Islands study (González-Martín et al. 2000). In this respect, it is worth mentioning that lately an outbreak of vancomycin-resistant E. faecium in kidney transplant patients has been described in a Hospital of Canary Islands (Montesinos et al. 2010), raising the need to check periodically vancomycin resistance in Enterococcus from animal samples.

Nucleotide sequence determination of the E. faecalis cylotysin operon revealed a complex determinant encoding 5 gene products, which are necessary and sufficient for cytolysin production (Biando et al. 2010, Udo et al. 2011). The genes are cylLL, cylLS, cylM, cylB, cylA, and cylL; it has been suggested in the extant literature that β-haemolytic strains must have the whole set of cyl genes (Laverde et al. 2011). The presence of genes of cyl operon has been found more frequently in E. faecalis (most of them from clinical isolates), and less frequently in different enterococcal species and from different origins (Khan et al. 2005, Channaiah et al. 2010, Diarra et al. 2010, Olsen et al. 2012, Gonçalves et al. 2011, Silva et al. 2011, Champagne et al. 2011, Ramos et al. 2012, Dahlén et al. 2012). In the present study, no cylA or cylB genes were found in any of the strains, which is congruent with the strain being β-haemolytic. This negative result may be explained because E. hirae is the most frequent species (54.3%) and in other assays the yielded positive results for any of the cyl genes in this species has been too low (Semedo et al. 2003) or negative (Channaiah et al. 2010, Diarra et al. 2010, Champagne et al. 2011). Although our isolates yielded no positive results for any of the cyl genes tested, they may still harbour virulence determinants that were not investigated in this study.

We would like to remark the importance of monitoring the presence of resistant enterococci in animals including the ones used for recreational purposes. In addition to this, faecal enterococci could contribute to horizontal spread of virulence and resistance genes to other clinically important bacteria. Epidemiological studies in different animals should be continued to monitor the presence and dissemination of resistance and virulence genes of enterococci in order to establish public health measures.
Enterococcus spp. isolated from Camel faeces

References

Enterococcus spp. isolated from Camel faeces from partridges (Alectoris rufa) representing a food safety problem. Foodborne Pathog Dis, 8 (7), 831-833.

