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Summary 
The authors present findings from two 
landscape epidemiology studies of chronic 
wasting disease (CWD) in northern Colorado 
mule deer (Odocoileus hemionus). First, the 
effects of human land use on disease 
prevalence were explored by formulating a set 
of models estimating CWD prevalence in 
relation to differences in human land use, sex 
and geographic location. Prevalence was 
higher in developed areas and among male 
deer suggesting that anthropogenic influences 
(changes in land use), differences in exposure 
risk between sexes and landscape-scaled 
heterogeneity are associated with CWD 
prevalence. The second study focused on 
identifying scales of mule deer movement and 
mixing that had the greatest influence on the 
spatial pattern of CWD in north-central 
Colorado. The authors hypothesised that three 
scales of mixing – individual, winter 
subpopulation and summer subpopulation – 
might control spatial variation in disease 

prevalence. A fully Bayesian hierarchical 
model was developed to compare the strength 
of evidence for each mixing scale. Strong 
evidence was found indicating that the finest 
mixing scale corresponded best to the 
observed spatial distribution of CWD 
prevalence. This analysis demonstrates how 
information on the scales of spatial processes 
that generate observed patterns can be used to 
gain insight into the epidemiology of wildlife 
diseases when process data are sparse or 
unavailable. 
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Il ruolo dei sistemi informativi 
geografici nell’epidemiologia 
ambientale degli animali 
selvatici: modelli della malattia 
del deperimento cronico nel 
cervo mulo in Colorado 
Riassunto 
Gli autori presentano i risultati di due studi di 
epidemiologia ambientale sulla malattia del 
deperimento cronico del cervo mulo (Odocoileus 
hemionus) nel nord del Colorado. Innanzitutto 
sono stati valutati gli effetti dell’uso del suolo sulla 
prevalenza della malattia attraverso la formulazione 
di un set di modelli che stimano la prevalenza della 
malattia del dimagrimento cronico in relazione al 
diverse tipologie di uso del suolo da parte dell’uomo, 
al sesso e alla localizzazione geografica. Una 
prevalenza più alta è stata riscontrata nelle aree 
sviluppate e tra i cervi maschi lasciando così 
supporre che le influenze antropogeniche 
(cambiamenti nell’utilizzo del terreno), le differenze 
di esposizione al rischio tra i sessi e l’eterogeneità 
ecologiche bilanciate siano associate alla prevalenza 
della malattia del dimagrimento cronico. Lo studio 
successivo identifica i diversi livelli di movimento e 
di mescolanza delle popolazioni del cervo mulo 
riconosciuti come elementi influenzanti la tipologia 
di distribuzione spaziale della malattia del 
dimagrimento cronico nel Colorado centro-
settentrionale. Gli autori ipotizzano che tre 
tipologie di mescolamento – individui, subpopola-
zione invernale e subpopolazione estiva – siano in 
grado di influenzare le variazioni spaziali nella 
prevalenza della malattia. E’ stato sviluppato un 
modello gerarchico Bayesiano per mettere a 
confronto la capacità di prova per ciascuna scala di 
mescolamento. Mediante questa analisi è stato 
possibile evidenziare come la scala che descrive i 
rimescolamenti di popolazione, in maniera più 
particolareggiata possa essere usata per descrivere 
la distribuzione spaziale della prevalenza della 
malattia del dimagrimento cronico osservata. 
Questa analisi dimostra come le informazioni 
provenienti dalla definizione dei processi spaziali, 
che generano le tipologie di diffusione delle 
patologie osservate, possano essere utilizzate per 
conseguire nuove informazioni sull’epidemiologia 
delle malattie della fauna selvatica nel caso in cui i 

dati utilizzati siano non omogenei per provenienza 
o non disponibili. 

Parole chiave 
Cambiamenti dell’uso del suolo, Ecologia delle 
malattie, Epidemiologia spaziale, Malattia del 
dimagrimento cronico, Modelli gerarchici 
Bayesiani, Modello di selezione, Modelli 
spaziali, Scale spaziali, Sistema informativo 
geografico. 

Introduction 
Little attention has been paid to the ways in 
which humans influence the dynamics of 
pathogens and hosts (6, 19). A variety of 
emerging, infectious diseases affect wildlife 
populations (11, 21) and the dynamics of these 
pathogen-wildlife systems are potentially 
shaped by human action. Linking spatial 
disease patterns to the processes that generate 
them offers a contemporary challenge to the 
field of landscape epidemiology (12), 
particularly in wildlife systems where 
information is often sparse or absent. It is 
possible that emergent patterns might reflect 
the outcome of processes operating at more 
than one nested scale. Hierarchical models 
provide a natural, unified framework for 
comparing spatial and temporal processes that 
operate across a range of scales. Research 
findings are summarised from two previously 
reported studies (7, 8). The first study (7) 
explored how patterns of human land use 
influence variation in chronic wasting disease 
(CWD) prevalence across north-central 
Colorado. The authors hypothesised that 
human development of mule deer habitat 
could result in higher CWD prevalence. We 
also examined the influence of gender and 
geographic location on prevalence since earlier 
analyses (13, 15) suggested that these factors 
may affect patterns of CWD prevalence. In the 
second study (8), we used hierarchical 
modelling to investigate the potential 
contribution of different scales of deer 
movement and mixing to observed patterns of 
CWD in northern Colorado mule deer. In 
addition to gaining insights into the spatial 
epidemiology of CWD, we demonstrated how 
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hierarchical modelling can be used to 
understand the relative contribution of 
hypothesised generating processes to spatial 
patterns of disease. 

Human land use and chronic wasting 
disease 
The epidemic area in north-central Colorado 
includes human communities that are growing 
more rapidly than almost any in the United 
States (1). Between 1970 and 2000, areas with 
housing density greater than 1 per 20 ha 
within game management units most affected 
by CWD (18) more than doubled (40 636 to 
81 836 ha). The effects of land-use change on 
disease processes in mule deer populations are 
poorly understood, however two potential 
mechanisms could exacerbate disease 
transmission in developed areas. First, if deer 
avoid areas of high human population density 
(for example, because of fences, dogs and other 
sources of disturbance), development could 
compress the area of landscape used by deer, 
thereby increasing their density. It is plausible 
that increased density could accelerate rates of 
contact between infected and susceptible 
individuals. Second, development tends to 
reduce hunting pressure. As a result, adult 
deer, particularly males, tend to live longer in 
areas where hunting pressure is low, which 
prolongs the average clinical course by 
eliminating a major source of mortality and 
increasing the total time infected animals are 
able to transmit CWD. 

Movement scales and chronic wasting 
disease 
Mule deer movement in north-central 
Colorado can be divided into three categories, 
reflecting the geographic scales of seasonally 
dependent movement patterns (5). At the 
largest scale, the summer subpopulation home 
range, mule deer home range sizes average 
approximately 310 km2 and exhibit greater 
overlap (about 22%) than at any other time of 
year (5). At the winter subpopulation home 
range scale, deer live in groups with average 
home range size of approximately 80 km2 and 
exhibit little overlap (<1%) among wintering 
groups (5). Finally, individual mule deer have 
a characteristic home range size that averages 

about 9 km2 during the winter when deer are 
more sedentary (5). 
High fidelity to seasonal use areas and 
temporally consistent movement patterns of 
subpopulations (5) and presumably the 
resulting home range scales, suggest the 
importance of local, small-scale contact 
processes in structuring CWD spatial 
heterogeneity. Large-scale movement patterns 
– such as those that occur when 
subpopulations expand their home range 
between winter and summer locations – could 
result in a greater number of contacts among 
deer that do not interact during the winter 
months. If large-scale movements were 
primarily responsible for the structure of the 
spatial heterogeneity of CWD, then the spatial 
distribution of infected deer should exhibit 
greater homogeneity at large geographic scales 
than would be expected if disease transmission 
occurs predominately at local winter 
subpopulation or individual movement scales. 

Methods 

Study area 
Our study area included 6 500 km2 in north-
central Colorado (Fig. 1) where CWD is 
endemic in free-ranging cervids (13). Within 
this area we studied the relationship between 
CWD infection and human land use using 
three study sites spanning approximately 
1 200 km2 in Larimer County, Colorado, 
namely: Estes Park (EP), Glacier View 
Meadows (GVM) and Horsetooth Reservoir 
(HT). We selected these sites because they 
were typical of rapidly growing development 
patterns found in historic mule deer habitat in 
north-central Colorado where housing 
developments perforate the landscape (18). 
Each of the three study sites consisted of a 
developed zone nested within a larger 
undeveloped portion of the landscape (Fig. 2). 
We separated land use into developed and 
undeveloped categories based on a housing 
density map (7, 17). Developed zones were 
defined as having ≥1 dwelling per 8 ha 
(20 acres) and ‘undeveloped’ zones were 
remaining areas with <1 dwelling per 8 ha. 
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Figure 1 
Study site in north-central Colorado overlaid 
with the spatial distribution of chronic wasting 
disease (CWD) data and the 540 9-km2 grid 
cells used in modelling individual-level infection 
probability at the finest analysis scale 

Data 
The Colorado Division of Wildlife (CDOW) 
provided georeferenced data for 3 855 mule 
deer (Fig. 1) tested for CWD infection between 
1997 and 2003 within the study area. All 
samples were georeferenced using either a 
global positioning system unit or by 
identifying sample source locations on 
standardised maps. Sampling methods 
included deer that were killed by hunters, 
culled by wildlife managers, or captured and 
tonsil biopsied in developed areas. Survey and 
diagnostic methods have been described in 
detail elsewhere (13, 14, 22). Sampled deer 

were classified as CWD-positive or -negative 
based on immunohistochemistry of 
retropharyngeal lymph node or tonsil tissue 
(14). 

 
Figure 2 
Locations of the three study sites, Estes Park 
(EP), Glacier View Meadows (GVM) and 
Horsetooth Reservoir (HT), in north-central 
Colorado 

For the first analysis, examining the impacts of 
anthropogenic land use on CWD, we used 
georeferenced data on presence/absence of 
CWD infection in individual deer sampled 
from urban and non-urban areas between 1997 
and 2002. We used a geographic information 
system (GIS) to assign each deer sample 
location to a land-use class (Fig. 2). Deer 
sampled in or within 1 km of core developed 
areas in each study site were categorised as 
‘urban’ deer; deer sampled >1 km from 
developed areas were categorised as ‘non-
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urban’ deer. First, we wanted to reduce 
mapping errors associated with deer sampled 
near the boundary between developed and 
undeveloped zones. Second, although deer 
sampled in developed zones undoubtedly 
spent time in these areas, some deer residing in 
developed zones also may spend time in the 
periphery of these areas, where they could 
have been sampled. The sample of non-urban 
deer was specified by using concentric rings 
extending out from the developed land-use 
class in half kilometre increments (Fig. 3) until 
we obtained a sample size of non-urban deer 
that was similar to the number of urban deer 
collected from the corresponding developed 
zone at each study site. Having an equal 
number from each category provided a 
balanced design for model fitting and removed 
any arbitrariness that might be associated with 
how far out to extend the concentric rings from 
the urban areas. 

 
Figure 3 
Mule deer samples for the Glacier View 
Meadows site, showing the area defined as 
‘developed’ along with the half-kilometre 
annuli used for allocating deer to 
‘undeveloped’ land use class 

For the second analysis, we used a GIS to 
partition the study area into three grids so that 
each grid had a resolution representing one of 
the scales of mule deer movement: 9 km2, 
81 km2 and 324 km2 overlaid on the map of 
deer samples (Fig. 1 illustrates the 9 km2 

example). The 9 km2 grid (3×3 km square) was 
the sampling grid established by the CDOW. 
The two coarser scale grids resulted from 
combining multiple 9 km2 grid cells. Beginning 
with the north-western most 9 km2 cell, we 
used a moving window to combine 
neighbouring 9 km2 cells until we had 
achieved a new grid cell with a resolution 
equal to the next coarsest scale of deer 
movement. This process was iterated across 
the entire map at both of the coarser 
movement scales. Constructing the grids in 
this manner resulted in all three grids being 
aligned with the 9 km2 sampling grid 
established by the CDOW. Finally, because 
CWD prevalence remained relatively constant 
within the study area between 1996 and 2003 
(13, 16) we aggregated the data across all 
years. 
Data on sex and age class (juvenile or adult) 
were recorded for each deer. In addition, three 
environmental (Env) covariates were 
calculated using a GIS containing data grids 
representing land ownership and vegetation 
patterns across the study area at a 90-metre 
resolution. The covariate values were: 
proportion of private land (%PRIV), 
proportion of low elevation habitat (%HAB) 
and an index measure of private land 
connectivity (DISP), calculated for each grid-
cell across the three movement scale grids 
used in the model. Each environmental 
covariate was assumed to exert the same 
influence on all individuals sampled from the 
same grid cell. Thus, these covariates were 
scaled to the map resolution considered in 
each model. 

Models for human land use 
We used likelihood methods and information 
theoretics (Akaike’s information criterion 
corrected for small sample size: AICc) (4) to 
estimate parameters and quantify the strength 
of evidence, respectively, for 16 alternative 
logistic regression models describing the 
relationship between CWD prevalence and the 
three variables of interest, namely: land use 
type, sex and study site. Our primary 
hypothesis was that higher prevalence would 
be associated with developed, versus nearby 
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undeveloped, areas. Land-use effect was 
represented by the binary covariate ‘Use’, 
indicating whether a deer was sampled from 
the developed or undeveloped land-use class. 
The influence of gender was coded as ‘Sex’ 
(male, female). Site level effects were coded as 
EP, GVM and HT. 
Model parameters were estimated from data, 
so there was some uncertainty that the ‘best’ 
model would emerge as superior if different 
data were used to compare alternative models. 
We quantified model uncertainty with Akaike 
weights, wr (4). The wr can be used to estimate 
the likelihood of the model, given the data and 
in so doing offer a way to compare the relative 
weight of evidence for each model considered. 

Models for movement scales and 
chronic wasting disease 
Deer movement data was collected from 
approximately 10% of the study area. 
Partitioning the study region into aerial units 
(grid cells) reflecting the various scales of 
seasonally dependent mule deer movement 
patterns allowed us to compare different 
movement scales with limited information. 
The hierarchical structure accommodated 
uncertainties in the point-based CWD data by 
treating all individuals sampled from within 
the same grid cell as having an identical 
exposure risk for CWD after adjusting for 
individual-level sex and age effects. 
We considered a generalised linear model of 
disease presence/absence. For each individual 
deer, we modelled the probability of being 
CWD-positive as a function of the covariates 
and two random effects terms, which 
accounted for any unobserved, correlated 
covariates as well as the spatial pattern in the 
probability of disease presence. 
This generalised linear model can be described 
in three stages, as follows: 
 the data model linking the data to the model 
parameters 

 the process model relating the covariates and 
random effects to the parameters 

 the prior distributions for all model 
parameters (20). 

Our interest focused on the posterior 
distribution, the distribution of the process and 

parameters after being informed by the data. 
For many ecological problems, the high 
dimensionality of the model can prohibit the 
use of standard methods. However, Markov 
Chain Monte Carlo (MCMC) (9) techniques 
allowed us to estimate the posterior 
distribution of interest. 
The data model relates the known infection 
status for each deer to the probability of 
infection. With Yij as the known infection status 
for deer i = 1,…,nj in cell j = 1,…,k, we assume 
that infection status is Bernoulli distributed 
with parameter πij: 

Yij ∼ Bernoulli (πij),  [1] 
where πij is the probability of infection for 
individual i in cell j. All observations are 
assumed to be conditionally independent 
given this parameter. 
The process component of the model relates 
the probability of infection for each deer, Πij, to 
the individual and environmental covariates. 
We included two random effects terms to 
account for variability that is not accounted for 
by the covariates. To constrain the Bernoulli 
distributed infection probability to the range 0 
to 1, we used a standard logit transformation. 
Thus we modelled the probability that an 
individual is infected as: 
logit( ) T

ij ij j jxπ µ β γ δ= + + + , [2] 
where µ is the background infection rate 
common to all deer, βis an m × 1 vector of 
regression coefficients corresponding to the 

T
i jx , the transpose of the m × 1 vector of 

individual covariates for the ith deer and the 
scale-dependent environmental covariates 
associated with the jth grid cell, γj is the scale-
dependent spatial random effects term for the 
jth grid cell, and δj is the independent random 
effects term associated with the jth grid cell. 
The independent random effects vary with the 
scale of analysis, but exhibit no spatial 
dependency. The random effect terms are 
described below. 
Here we present descriptions of the prior and 
posterior distributions, but much of the detail 
has necessarily been omitted. Interested 
readers will find detailed descriptions in 
Farnsworth et al. (8). Because our analysis is 
fully Bayesian, we specify prior distributions 
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for all model parameters in the hierarchy. The 
spatial component, modelled by γj, is a key 
parameter of interest because it models the 
latent, or unobserved, contact process among 
mule deer resulting in the local structure of 
CWD. Spatial variation in our model is limited 
to cells sharing a border; however there are no 
a priori restrictions on specifying the 
neighbourhood structure or cell weights. We 
use second-order neighbourhoods consisting 
of the eight grid cells surrounding the grid cell 
in question. Thus, grid cells either sharing a 
border or immediately diagonal to the focal 
cell are considered in modelling spatial 
dependency. We chose a second-order 
neighbourhood instead of something larger 
because we wished to maintain a sharp 
distinction between local dependency and 
global unstructured heterogeneity, which 
becomes increasingly blurred as the local 
neighbourhood is extended. 
The unstructured heterogeneity term, δj, 
corresponds to a latent process operating 
independently in each grid cell at the chosen 
scale (e.g., home-range scale). This component 
models the overall, unstructured heterogeneity 
in the data by assuming no relationship among 
neighbouring grid cells, but with a variance 
that is common to all grid cells. 
The following distributions applied to the 
remaining model parameters. For the baseline 
disease risk, µ was assumed to follow an 
improper (flat) prior on the whole real line. 
This flat prior must always be used for the 
intercept term in models containing 
conditional autoregression (CAR) random 
effects due to the sum to zero constraint placed 
on the spatial random effects. For the 
standardised covariates, we assumed 

2~ (0 , I )N ββ σ . We specified uniform priors for 
the variance parameters, 2

βσ , associated with 
the fixed effects components. 
Finally, the joint posterior distribution of all 
model parameters given the field data was fit 
at the three scales of interest (grid cells of 
9 km2, 81 km2 and 324 km2) for various 
combinations of predictors selected a priori. 
Thus, our models contained various 
combinations of demographic (Demo), Env, 
spatially structured (Space) and unstructured 

(Het) variation. We examined the utility of 
incorporating continuous spatial functions, by 
fitting binary variogram models to the data in 
our models, however we were never able to 
appropriately estimate the parameters of these 
variogram models due to the relatively few 
positives in the data set, e.g. a prevalence rate 
of approximately 6% across the study site. 
Finally, although the grid representation for 
movement scales is heuristic, we believe that it 
is a reasonable representation of the various 
spatial scales of movement seen in these mule 
deer populations. The spatial structure 
induced by the model is dependent on the 
underlying grid (3) and the three grid scales 
are not functionally related, thus it is not 
possible to directly scale up or down between 
the different models (2). However, for the 
current analysis this is not a concern since our 
interest lies in comparing the fit of the models 
across the three scales and not on determining 
how the spatial structure itself changes with 
scale. 

Results 

Human land use and chronic wasting 
disease 
Of the 16 candidate models fit to the entire 
data set, the top two models (Table I) 
suggested that sex, land use and site effects all 
were important predictors of CWD prevalence. 
The combined wr for the top two models 
indicated a 90% probability that the best 
approximating model for our field data 
contained all three covariates as additive 
effects, with the other 14 models sharing the 
remaining 10% of the support. Estimates of 
slope terms from the top model suggested that 
deer in developed areas were almost twice as 
likely to test positive for CWD than deer in 
undeveloped areas (odds ratio = 1.98, p = 0.011, 
95% credible interval [CI] = 1.17, 3.34) and that 
males were nearly 2.5 times more likely to be 
infected than females (odds ratio = 2.35, 
p = 0.001, 95% CI = 1.39, 3.97). Deer sampled 
from the EP site were approximately one-
fourth as likely to be infected with CWD as 
those sampled from the HT site (odds 
ratio = 0.27, p < 0.001, 95% CI = 0.14, 0.51) and 
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deer from the GVM site were about one-half as 
likely to be infected as deer in the HT site 
(odds ratio = 0.55, p = 0.062, 95% C.I = 0.30, 
1.03). 

Table I 
Candidate sets of models used to understand 
the relative influence of covariates on the 
probability that an individual mule deer tested 
positive for chronic wasting disease 
Only the top five models are shown for clarity 

Model (all deer) K Log-lik ∆AICc wr 

Sex use EP GVM 5 –224.359 0.000 0.601 

Sex use EP 4 –226.063 1.385 0.301 

Sex EP GVM 4 –227.742 4.743 0.056 

Sex EP 3 –229.516 6.273 0.026 

Use EP GVM 4 –229.581 8.420 0.009 

K number of estimable parameters 
Log-lik maximised value of the logarithm of the likelihood 

function 
∆AICc the difference in Akaike’s information criterion 

corrected (AICc) between the model being 
considered and the best model in the candidate set 

wr Akaike weight; quantifies model selection uncertainty 
EP Estes Park 
GVM Glacier View Meadows 
 
Modelling sexes separately offered additional 
insight into the relative influences of land-use 
and site-specific effects on CWD prevalence. 
Based on model averaged estimates, males in 
developed areas were more than twice as 
likely to be infected as males sampled from 
undeveloped areas (odds ratio = 2.27, 95% 

CI = 1.17, 4.42). Males in the EP site had 
approximately one-third the probability of 
testing positive for CWD in comparison to 
those at the HT site (odds ratio = 0.35, 
p = 0.011, 95% CI = 0.16, 0.78). 
In the top female-only model containing an EP 
effect, we observed a more pronounced effect 
of site, with females sampled from the EP site 
being approximately one-sixth as likely to be 
infected as females sampled at the HT site 
(odds ratio = 0.17, p = 0.002, 95% CI = 0.05, 
0.53). Overall, the site effect appeared to be the 
most informative predictor of CWD prevalence 
in females, while both land use and site effects 
contributed almost equally as predictors of 
prevalence in males. 

Movement scales and chronic wasting 
disease 
Our analyses revealed strong support for local 
influences on observed spatial patterns of 
CWD prevalence in mule deer. For clarity, 
only results for the top 10 out of 22 models fit 
are shown in Table II. Based on the wDIC shown 
in Table I, the individual home range scale of 
9 km2 is the only one that deserves 
consideration as the process scale 
corresponding to the spatial structure of the 
CWD data. The combined weights for 
Models 1 to 4 (Table II), wDIC = 0.99, indicated 

Table II 
Model selection results to identify the candidate models best explaining observed spatial patterns of 
chronic wasting disease prevalence in mule deer 
Three analysis scales (grid cells of 9 km2, 81 km2 and 324 km2) were examined, using models that incorporated various 
combinations of demographic, environmental, spatial and unstructured heterogeneous variation 
Demo = age + sex; Env = %HAB + %PRIV + DISP (see ‘Methods’ for details) 
Space is the spatial random effect; Het is the unstructured variation in the model 

Model No. Scale (km2) Model pD DIC wDIC 

1 9  Demo + Space 71.1 2182.76 0.694 

2 9  Demo + Env + Space + Het 80.7 2186.28 0.119 

3 9 Demo + Env + Space 50.2 2186.73 0.095 

4 9 Demo + Space + Het 95.5 2187.04 0.082 

5 81 Demo + Env + Space 22.4 2192.42 0.006 

6 9 Demo + Env + Het 65.0 2195.10 0.001 

7 81 Demo + Env + Het 30.5 2195.39 0.001 

8 81 Demo + Env + Space + Het 34.6 2195.67 0.001 

9 81 Demo + Env  6.0 2197.57 0.000 

10 81 Demo + Space + Het 78.7 2244.20 0.000 

pD effective number of parameters Demo demographic variation 
DIC deviance information criteria Space variation within second-order neighbourhoods 
wDIC DIC weight (informally quantifies model selection uncertainty) Env environmental variation 
  Het variation across the entire landscape 
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nearly exclusive support for models at the 
individual-home range scale. Within this set, 
all four models contained a spatial random 
effect for estimating the probability of CWD 
infection. 
Table III shows the posterior means, standard 
deviations and 95% credible intervals, all on 
the logit scale, for the univariate parameters 
from Models 1 and 2. The individual-level 
offsets of sex and age show that infection 
probability is higher in males (odds-
ratio = 2.05, 95% CI = 1.60, 2.64) and in deer at 
least two years old (odds-ratio = 3.46, 95% 
CI = 2.20, 5.63) after adjusting for the effects 
due to the environmental variables. Estimates 
of environmental covariate effects from 
Model 2 show that %PRIV (odds-ratio = 2.45, 
95% CI = 1.25, 4.77) and %HAB (odds-
ratio = 2.21, 95% CI = 1.04, 4.54) significantly 
influenced infection probability. However, 
these credible intervals were relatively wide, 
reflecting a high degree of uncertainty in the 
estimates. 
A visual comparison (Figs 4 and 5) of the top 
model containing only demographic covariates 
and spatial structure (Model 1 in Table II) with 
this model, but with the addition of the 
environmental covariates (Model 3 in Table II), 
shows that Model 1 had a concentrated 
distribution of posterior spatial random effects 
across the landscape, whereas Model 3 had a 
more diffuse distribution and a lower overall 
intensity of spatial random effects. The 
negative intensities shown in blue are areas of 
the landscape where the estimated probability 

of infection is adjusted to a lower level because 
there are relatively few infected deer in 
neighbouring grid cells. In contrast, red areas 
reflect locations where the probability of 
infection is adjusted up due to a relatively high 
proportion of infected deer in neighbouring 
grid cells. 
It is not surprising that including 
environmental covariates in the model 
diminished the strength of the local spatial 
process. This effect can be demonstrated 
quantitatively by examining the difference in 
the number of effective parameters, pD, 
between Models 1 and 3, the top models with 
and without this effect (Table II). Adding the 
three environmental covariates to the top 
model, each contributing a single parameter, 
reduces pD by more than 20 in the resulting 
third best model. This reduction occurred 
because the environmental covariates ‘shrunk’ 
the variability in the spatial random effect 
towards an overall mean effect, thereby 
reducing the effective number of parameters 
necessary for modelling the spatial variation in 
CWD infection probability. 

Discussion 

Human land use and chronic wasting 
disease 
CWD in north-central Colorado occurs in an 
environment undergoing substantial human-
induced changes (10). The human population 
in this region has grown by 68% during the 
last two decades, making it one of the fastest 

Table III 
Univariate parameter estimates from Model 1 and Model 2 
Estimates for individual-level covariates sex and age are from Model 1, the top DIC model, which did 
not contain environmental covariates, with environmental covariate effects from Model 2, the best 
model containing these effects 

Variable Model rank Mean SD 2.5% CI 97.5% CI 

Sex 1 0.72 0.13 0.47 0.97 

Age 1 1.24 0.24 0.79 1.73 

%PRIV 2 0.89 0.33 0.22 1.57 

%HAB 2 0.79 0.39 0.04 1.51 

Disp 2 0.03 0.07 –0.13 0.19 

SD standard deviation 
CI credible interval 
%PRIV proportion of private land 
%HAB proportion of low elevation habitat 
Disp index measure of private land connectivity 
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Figure 4 
Posterior estimates of mean spatial random effects for Model 1, the best approximating model of the 
probability that an individual deer was infected with chronic wasting disease 
The model was fit at a 9 km2 analysis scale and used the demographic (Demo) and spatial random effects (Space), 
resulting in a concentrated distribution of infection probabilities 

 
Figure 5 
Posterior estimates of mean spatial random effects for Model 3 of the probability that an individual deer 
was infected with chronic wasting disease 
The model was fit at a 9 km2 analysis scale and used the demographic (Demo) and environmental (Env) covariates 
and spatial (Space) random effects, resulting in a more diffuse distribution of infection probabilities than in Model 1 
The negative intensities shown in blue are areas of the landscape where the estimated probability of infection is 
adjusted lower because there are relatively few infected deer in neighbouring grid cells. In contrast, red areas reflect 
locations where the probability of infection is adjusted up due to a relatively high proportion of infected deer in 
neighbouring grid cells 
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growing populations in the United States (1). 
Expanding human habitation has altered land 
use as landscapes have been developed. These 
alterations in land use have changed the extent 
and configuration of wildlife habitat in this 
region (7), including specific habitats used by 
mule deer. Our work suggests that these 
changes in land use may play a role in the 
spatial and temporal dynamics of CWD in 
mule deer. 
Prevalence of CWD in deer sampled from 
developed areas was almost twice as high as 
prevalence in undeveloped areas (about 10% 
versus 6%) and models that included land use 
tended to be strongly supported by our field 
data. Land-use modifications that accelerate 
contact rates between the infectious agent and 
susceptible individuals might account for 
observed differences in prevalence between 
developed and undeveloped areas. Wolfe et al. 
(22) suggested that higher prevalence observed 
in deer in developed locations could be 
explained by local factors, such as artificial 
feeding around residences, that concentrate 
deer at a few points on the landscape. In 
addition to altering movements or habitat use, 
urbanised areas also may offer refuge from 
natural predators and human hunting, thereby 
allowing CWD-infected deer to survive and 
shed infectious agent longer than in areas with 
more predators. The relative paucity of 
predators in urban areas could also allow 
infected carcasses to persist longer in urban 
habitats. Finally, elimination of suitable habitat 
by development might concentrate mule deer 
populations on smaller areas of undeveloped 
winter range, thereby increasing population 
density and accelerating disease transmission. 
All of these mechanisms could contribute to 
higher CWD prevalence in developed areas. 
Future work should focus on identifying 
which, if any, of these mechanisms are 
responsible for the effects associated with land 
use we observed. 
Prevalence among male mule deer in our 
study was nearly twice as high as among 
females (about 10% versus 6%). Sex-specific 
analyses revealed that males sampled from 
developed locations were more than twice as 
likely to test positive for CWD as males in 

undeveloped locations, while there was less of 
a difference for females. Model selection 
results also reflected this trend: support for 
land-use effects on CWD prevalence was 
stronger in field data from males (wr = 0.84) 
than from females (wr = 0.44). The relationship 
observed between land-use and sex effects 
may have arisen from differences in sex and 
age structures of mule deer populations in the 
two land-use categories. Because CWD is 
probably always fatal, older age classes will 
have more opportunity to be exposed to the 
infectious agent and thus should exhibit higher 
prevalence. Further, hunting is virtually absent 
from developed areas and, in undeveloped 
areas, hunting pressure on male deer is much 
greater than on females. Consequently, land 
use may have had an additional effect on the 
composition of male herd segments in our 
study areas. Higher prevalence in male deer 
from urban areas could be a product of 
relatively light hunting pressure that preserves 
a larger proportion of middle-aged males than 
in more heavily hunted populations in 
undeveloped areas; because land use-
associated differences in hunting pressure are 
smaller for females; this effect would be less 
evident among female subpopulations. 
Observations of CWD prevalence across north-
central Colorado show strong spatial 
heterogeneity (13) and our finer scale results 
are consistent with these observations. All of 
the supported models in our study included a 
site effect, with differences in prevalence 
among three study sites. Geographic 
heterogeneity in CWD prevalence may be 
structured in part by differences in the time 
since disease introduction (13), deer migration 
patterns (5), demography (5), harvest rates (16) 
and habitat (7) among infected mule deer 
subpopulations. Which factor or combination 
of factors gave rise to the differences observed 
among our three study areas cannot be 
determined with certainty. The size, duration 
and intensity of human development do differ 
somewhat among the GVM, HT and EP areas 
and these may have produced differential 
effects on deer habitats and deer use of altered 
habitats. 
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Movement scales and chronic wasting 
disease 
Our results provide evidence that the spatial 
structure of CWD results from small-scale, 
local contact processes, which most probably 
occur primarily during the winter season when 
subpopulation home ranges are reduced in 
size and the potential for infectious contacts 
among sympatric individuals is possibly 
increased (5, 14, 15, 16,). The key to arriving at 
this conclusion was the use of information 
about the scales over which the structuring 
process of movement occurs. As we specified 
analysis scales to correspond to the crucial 
epidemiological process of seasonal 
movements, we were able to better understand 
which type of movement pattern (wintering 
individual, winter subpopulation or summer 
subpopulation) appears to be the most 
plausible process scale underlying observed 
spatial patterns of CWD prevalence. 
Our research differs fundamentally from 
previous pattern-based analyses used in the 
few wildlife landscape epidemiological 
investigations that have been undertaken to 
date. Unlike other studies, we incorporated 
both host (sex and age) and environmental 
factors thought a priori to be important 

predictors of CWD spatial heterogeneity. By 
using a hierarchical model we were able to 
simultaneously consider the contributions 
made by these covariates, as well as from local 
spatial structure and overall landscape 
heterogeneity, to the risk of disease occurrence 
at each of the three movement scales. This 
model provides a powerful approach for a 
difficult problem in ecology –linking spatial 
patterns to the scales over which generating 
processes operate. By maintaining a constant 
data structure at the lowest (e.g. individual) 
level in the hierarchy, while varying the scale 
of the spatial process component of the model, 
a hierarchical approach allows for direct 
comparisons of the effect of various process 
scales on the spatial structure of host-pathogen 
relationships. 
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