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Ecological niche modelling and understanding the 

geography of disease transmission 

A. Townsend Peterson 

Summary 
Methods currently used to characterise 
geographic patterns of disease transmission 
usually involve loss of resolution and do not 
take into account the fine-scale ecological 
variation that underlies transmission patterns. 
A new suite of tools (ecological niche 
modelling) that permits fine-scale 
characterisation of geographic patterns 
without loss of resolution, and forecasting of 
invasive potential and effects of changing 
climate and land use on species’ distributions 
is presented. 
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Creazione di modelli di nicchia 
ecologica e conoscenza della 
geografia della trasmissione 
delle malattie 
Riassunto 
I metodi correntemente utilizzati per caratterizzare 
il quadro geografico della trasmissione delle 
malattie di solito comportano una perdita di 
risoluzione e non tengono conto delle sottili 
variazioni a livello ecologico che caratterizzano le 
modalità di trasmissione. Viene presentata una 
nuova gamma di strumenti (creazione di modelli di 
nicchia ecologica) che permette una caratterizza-
zione su piccola scala di modelli geografici, senza 
perdita di risoluzione, e consente inoltre una 
previsione del potenziale invasivo, degli effetti dei 

mutamenti climatici e dello sfruttamento del 
territorio sulla distribuzione delle specie. 
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Introduction 
Disease transmission systems consist of 
interacting species. Each species, at some scale 
of space and time, is distributed according to 
its ecological potential. It is constrained by a 
series of evolutionary adaptations that are 
generally conceptualised as the ecological 
niche (11, 12). As such, considerable insight 
can be gained from a detailed understanding 
of the ecological niches of each species (57) in a 
disease transmission system (pathogens, 
vectors, hosts). The conjunction of these 
individual ecologies with features of ecological 
landscapes determines the geography and 
ecology of the risk of disease transmission. 
Methodologies for evaluating the geographic 
risk of disease transmission (16, 21, 65) have 
generally focused on the overall distribution of 
cases as an epiphenomenon (that is, treating 
the transmission system as a ‘black box’), and 
in geographic space only (34). Both of these 
assumptions are not without peril. Many 
situations exist in which the ecological 
circumstances of transmission are 
understandable only when the individual 
ecologies of vector and host organisms are 
characterised independently (6) (see 
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hypothetical illustration in Fig. 1). Similarly, 
analysis in geographic space will only identify 
broad trends. Such analyses will not generally 
succeed in detecting the fine-scaled details of 
disease transmission that depend on local 
conditions (see small, solid arrow in Fig. 1). As 
such, a revised methodology that takes into 
account the details of ecological patterns and 
that can respond to the particular 
characteristics of individual species’ ecology is 
desirable. Such a methodology (ecological 
niche modelling or ‘ENM’) is presented. ENM 
has been developed and used in biodiversity 
studies (56). It focuses on reconstructing the 
details of species’ ecological niches in 
ecological dimensions; these models in 
ecological space can then be projected onto 
geography to hypothesise a potential 

geographic distribution. Separation of the 
phenomenon of geographic distributions of 
species into ecological and geographic phases 
offers many advantages for forecasting 
complex phenomena. 

Ecological niche modelling 
methodology 
ENM can take two forms – process-based 
modelling and empirical reconstructions. The 
former is based on detailed physiological 
information on the species that make up the 
system, whereas the latter is based on 
associations between known geographic 
occurrences of species and the ecological 
characteristics of the landscapes in which they 
occur. Process-based models have the 

 
Figure 1 
Hypothetical example in which vector and host ecologies must be understood separately for a 
synthetic understanding of the overall ecology of the transmission system 
Areas in which only one of the two interacting species is present are without disease transmission, but where both are 
present, transmission occurs 
Note that the geographic distributions (hypothetical map) are consequences of ecological niches (intersecting 
circles) and that the only geographic areas in which transmission can occur are a consequence of the joint 
ecologies of the two species – only where all ‘players’ in the game are present can transmission occur 
The small solid arrow indicates a narrow zone of no transmission 
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advantage of not being based on sampling 
inaccuracies (50, 51), but require full 
knowledge (which is perhaps impossible) of 
the factors influencing the distributions of the 
species involved. Empirical reconstructions 
have the advantage of broad applicability, but 
can be biased by sampling and the influence of 
other species not included in the study. 
Attempts to minimise these biases have been 
the focus of numerous analyses (1, 4, 14, 22, 32, 
39, 63). Empirical reconstructions are the focus 
of this review because they are much more 
broadly applicable, particularly to situations 
that are not well-characterised at the outset. 
Empirical ENMs and their geographic 
predictions are developed in several steps. 
Known occurrences are compiled and 
referenced geographically, representing a 
sample of known occurrences of the species of 
interest. Although large samples are 
preferable, ENMs can be developed and tested 
based on relatively small samples of 
occurrences, as few as 10-20 points in some 
cases (31). Digital geographic information 
system (GIS) layers are assembled to 
summarise the ecological dimensions in which 
the species is distributed, and that may (or 
may not) be involved in limiting its 
distribution. Examples of such GIS layers 
include climate, substrate, topography, 
landform and land surface reflectance. 
The relationship between occurrence data and 
environmental data layers is then 
characterised. A considerable diversity of 
methods has been explored, including range-
based rules (5, 28), multiple regression and 
other linear and additive statistical models (13, 
17, 27), and distance- and factor-based 
approaches (5, 14, 15). Perhaps most powerful 
have been evolutionary-computing approaches 
in which models can be developed that capture 
complex relationships between distributions 
and ecological dimensions with more 
flexibility and less bias (29, 48, 49, 58, 59). 
Few comparative studies among ENM 
methodologies have been conducted (9, 22, 23), 
and these studies are in need of careful 
interpretation. When viewed in a rigorous 
theoretical framework (57), users must take 
great care to distinguish between modelling 

applications that aim to produce general 
models of species’ ecological niches 
(extrapolation) versus those that aim to 
reconstruct species’ geographic distributions 
(interpolation). 
In disease applications of ENM, several studies 
have been developed using interpolation-
oriented methodologies (52, 62), although not 
necessarily under the rubric of ENM; however, 
these approaches do not necessarily focus on 
fitting a full climatic envelope for the species. 
Most recent studies have used newer, 
evolutionary-computing approaches that place 
greater emphasis on extrapolation and full 
fitting of niche models (34). 

Example applications 

Predict distributions 
The simplest of ENM applications is to profile 
species’ ecological niches to identify areas 
matching the niche requirements of the species 
and to interpolate predictions of likely 
presence versus absence among sampling 
points. These applications and the relative 
performance of different analytical approaches 
are well-documented and tested (10). Several 
disease applications of this type have been 
developed (18, 19, 20, 45, 53). 

Characterise ecological requirements 
In many cases, for species participating in 
disease transmission systems, even the basics 
of their ecological requirements may be 
unknown. In some cases, even the identity of 
the species may remain unknown. As such, 
ENM approaches can be based on what is 
known (geographic occurrences) to obtain a 
first characterisation. Several detailed 
examples have been developed (7, 41, 60). 

Predict invasive potential 
To the extent that ENM applications manage to 
fit general, extrapolative models of species’ 
ecological niches, and to the extent that 
species’ ecological niche characteristics are 
conservative, ENM can be used to predict the 
geographic potential of species as an invasive 
species on novel landscapes (33). These 
methods have been applied amply to the 
broader diversity of invasive species (36, 55, 
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64), but applications to disease systems remain 
relatively few (19, 46). 

Predict response to change 
ENM can be used to anticipate distributional 
responses to environmental change (44). To 
date, most applications have focused on 
responses of species to global climate change, 
with numerous analyses now published (2, 26, 
30, 37, 61). A few explorations of the effects of 
land use change have also been developed (47, 
54). Applications to disease systems have been 
scarce (40). 

Predict interactions among species 
Disease geography can be considered an 
epiphenomenon resulting from the conjunction 
of the respective ecologies of each of the 
participating species. ENM approaches can be 
used to infer likely species that may be 
participating in disease transmission systems 
by choosing species that present appropriate 
sets of ecological requirements and geographic 
possibilities. Example applications have been 
developed for Chagas disease (38) and Ebola 
and Marburg viruses (42), but much more 
exploration and experimentation is needed. 

Predict dynamics in time and space 
Time-specific ENMs that can predict disease 
transmission at fine scales both in time and in 
space have been developed. In these 
applications, remotely-sensed environmental 
data are essential (8), as they provide 
information that is specific and detailed in 
both time and space. For example, it is possible 
to anticipate where mosquito populations 
breed in one month based on their ecological 
characteristics as modelled in another month 
(43). These ideas, although novel and 
promising, are in great need of additional 
testing. The method requires input occurrence 
data that are rich in representation and fine in 
resolution both temporally and spatially. As 
such, very few usable data sets are available. 

Frontiers and challenges 
An optimistic view of a novel tool that can 
enable advances in the analysis of the ecology 
and geography of disease transmission has 
been presented. The ENM methodology can 

provide a species-by-species view of disease 
transmission elements, and offers considerable 
potential for forecasting complex biodiversity 
phenomena. Nonetheless, considerable work 
needs to be performed so that it can mature 
into a well-characterised and reliable 
methodology (3). A better understanding of 
the balance between generality and detail of 
prediction is essential: must a model offering 
detailed predictions of presence versus 
absence necessarily be less general? In spite of 
recent, intensive comparisons and surveys of 
ENM methods (10), these questions remain 
open, and beg careful study. Similarly, 
methods for evaluation of model predictions 
need to be refined to match the requirements 
of general, extrapolative ENMs, rather than 
optimisation of presence versus absence of 
predictions that current methods favour. 
Current methods are only beginning to 
address these questions (31). 
Further testing and experimentation are 
required to address the limits of conservatism 
of ecological niches. In spite of extensive 
demonstration of conservatism in vertebrates 
and plants (24, 25, 33, 35), the degree to which 
these conclusions also apply to invertebrate 
disease vectors has not yet been established. 
Similarly, further experimentation is needed to 
establish the limits of time-space disease 
predictions and detection of interacting species 
based on ENM analysis of cases and 
component species. All of these forecasting 
possibilities need additional testing before they 
can be considered established methodologies 
that are ready for use and application to 
disease transmission systems. 

Conclusions 
Ecological niche modelling methodologies 
have several advantages over existing 
methodologies for summarising spatial 
patterns of disease transmission and disease 
risk (16, 21, 65). In particular, ENM does not 
result in a loss of resolution, in contrast to 
existing methods. Rather, resolution is limited 
only by the spatial precision of the occurrence 
data and of the environmental data sets used 
to characterise the ecological niche of the 
species. Therefore, ENM offers considerable 
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improvements over existing approaches to 
summarising geographic patterns in disease 
transmission research. 
More generally, ENM offers the possibility of 
characterising the ecology and geography of a 
broad diversity of species. Any species for 
which a modicum of occurrence data is 
available, and for which sampling is 
reasonably well-distributed with regard to 
environmental variation, is tractable with these 
methods. The result is a detailed picture of the 
ecological and geographic distributional 

potential of species in a disease transmission 
system. 
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